evolución

Evolución humana: encéfalo, peso al nacer y sistema inmunológico

Evolución humana: encéfalo, peso al nacer y sistema inmunológico

     Última actualizacón: 15 septiembre 2017 a las 11:33

Uno de los rasgos definitorios de la especie humana es el gran tamaño que tiene nuestro encéfalo cuando nacemos y, sin embargo, la mayoría no somos conscientes del enorme precio que pagamos por ello. Comparados con el resto de primates, los humanos tenemos unos partos especialmente complicados, con altas tasas de morbilidad y mortalidad tanto materna como fetal (en el año 2010 se produjeron cerca de 287.000 muertes de madres en todo el mundo y las complicaciones durante el parto, incluyendo el parto obstruido, fueron las causas más importantes 1

Entre los investigadores existe un amplio consenso para explicar este fenómeno. La respuesta tiene que ver con el compromiso evolutivo que hemos debido asumir entre dos exigencias opuestas: por un lado, el desarrollo de un encéfalo grande; y por otro, la propia biomecánica de nuestra forma de caminar erguidos que impone restricciones en las dimensiones de la pelvis y, por ende, en el canal del parto. Esto es lo que se conoce como «dilema obstétrico«: la postura bípeda redujo el diámetro del canal del parto mientras que la evolución del encéfalo aumentó el de la cabeza, dificultando a su vez el parto. Si nos fijamos únicamente en los movimientos de la cabeza del feto, en el parto humano hay seis (que incluyen la flexión y extensión del cuello, así como la rotación de la cabeza dos veces); mientras que en los primates y demás mamíferos prácticamente solo hay uno.

Si repasamos nuestro pasado evolutivo veremos que en algún momento nuestros antepasados empezaron a llegar a este mundo cuando su encéfalo no había crecido aún lo suficiente. Pero con el paso del tiempo, el incremento del tamaño cerebral hizo que los niños tuvieran que nacer antes de que no pudieran atravesar el canal del parto debido a su gran cabeza. Como contrapartida, vendrían al mundo menos desarrollados que las crías de los chimpancés y tendrían que recuperar el terreno perdido después del nacimiento (los recién nacidos serían más dependientes. Por ejemplo, al nacer con un escaso desarrollo cognitivo y locomotor no podrían colgarse de la madre como hacen los pequeños simios y sus padres se verían obligados a cogerlos en brazos).

Pues bien, acaba de publicarse un número temático de las Philosophical Transactions (la revista de la Royal Society) donde se revisa el concepto del dilema obstétrico mediante un enfoque multidisciplinar, tomando en consideración los últimos avances en nuestra comprensión de la evolución del encéfalo humano, el bipedalismo y cómo se produce el desarrollo de un encéfalo grande en el útero.

 

A continuación presentamos cada artículo (con su correspondiente enlace que permite su lectura en línea) y un breve resumen de su contenido.

Artículos

Los autores demuestran que el alto grado de encefalización que resultó crítico para nuestra adaptación apareció entre los homininos en el curso de los últimos 2 millones de años (Ma). Lo principal en este debate, y para comprender el concepto del dilema obstétrico, es el equilibrio entre el crecimiento prenatal y postnatal del encéfalo. Obviamente, un encéfalo grande requiere una mayor inversión en energía, con un período prolongado de crecimiento después del parto para evitar limitaciones obstétricas. La evidencia actual indica que la ontogenia del encéfalo evolucionó a lo largo de diferentes vías en diferentes homininos del Pleistoceno; por ejemplo, la vía de los neandertales era distinta de la de los humanos actuales, que evolucionó en una época relativamente recientemente.

En este artículo se analiza cómo el clima y la geología cambiantes del este de África en los últimos 10 Ma han creado un escenario complejo, con un ambiente muy variable que dio forma a la evolución de nuestros antepasados. Los períodos alternativos de extrema humedad y aridez pueden haber impulsado la especiación de los homininos, la encefalización y la posterior salida de África. Hacen hincapié en que los cambios en el tamaño del encéfalo deben considerarse en el contexto más amplio de los cambios en la historia de vida, el tamaño del cuerpo y el dimorfismo, la adaptación a realizar marchas a larga distancia y el comportamiento social.

Se expone la forma en que han entrado en conflicto los requisitos mecánicos para la locomoción, el parto y la termorregulación. Nuestros primeros antepasados bípedos experimentaron cambios fundamentales en la forma de la pelvis, con un cambio en la función de los músculos de los glúteos, que facilitaron la actividad de andar. El resultado fue una pelvis que tenía una amplia cavidad interna, una forma que se mantuvo con pequeñas adaptaciones durante 3 o 4 Ma. Así, no fue hasta que apareció Homo sapiens hace unos 200.000 años cuando surgió la pelvis anatómicamente moderna con un canal del parto más circular, y asociada a un cuerpo más estrecho necesario para facilitar la disipación del calor.

Aquí se describe cómo la configuración moderna de la pelvis femenina exige una rotación del feto durante el parto para dejar espacio primero a la cabeza y luego a los hombros. El resultado final es que el niño nace mirando en dirección opuesta a la madre. Así, este tipo de parto requiere tener a alguien que ayude a despejar las vías respiratorias del bebé. Para terminar el autor analiza las recientes observaciones de nacimientos en monos y simios con el fin de comparar el proceso en primates humanos y no humanos, destacando las similitudes y las diferencias de ambos procesos.

En esta revisión el autor recuerda que existe mucha variabilidad en la gravedad de las complicaciones obstétricas que se dan en las poblaciones humanas actuales. Propone que el dilema obstétrico no es fijo, y puede cambiar en respuesta a las tendencias de crecimiento impulsadas por el cambio ecológico. Señala que el crecimiento fetal está débilmente regulado por los genes y depende en gran medida de la asignación maternal de los recursos de nutrientes. El suministro de estos recursos depende a su vez del ambiente y las propias necesidades de la madre. Por lo tanto, los cambios en la nutrición materna tanto a corto como a largo plazo pueden tener un profundo impacto en el dilema obstétrico a través de sus efectos sobre el tamaño de la madre y el crecimiento fetal.

En este artículo los autores analizan el papel de la placenta como órgano de enlace entre la madre y el feto. Aunque se considera un órgano de intercambio, la placenta realiza una amplia variedad de funciones que integran el suministro de la madre y las demandas del feto: segrega numerosas hormonas que tienen efectos muy importantes sobre el metabolismo y la fisiología materna, así como incrementa las reservas de nutrientes al principio del embarazo para poder satisfacer las demandas fetales a lo largo del periodo de gestación. La placenta también actúa como una barrera selectiva a fin de proporcionar un entorno estable en el que el feto pueda desarrollarse.

La placenta es el órgano de los mamíferos con mayor variabilidad morfológica. En este trabajo se reflexiona acerca de su evolución, analizando cuatro características principales: su forma, la interdigitación materno-fetal 2, la intimidad de la interfaz materno-fetal y el patrón de flujo sanguíneo.

En este estudio se desarrolla un nuevo enfoque genómico para entender la evolución de la invasión placentaria. La placenta humana es la más invasiva de todas las especies, y esta característica se ha asociado a menudo con el desarrollo de un encéfalo más grande. Esta situación además conlleva un peaje en términos de complicaciones durante el embarazo, como la preeclampsia, que es casi exclusiva de los humanos. Los autores argumentan que durante la evolución se seleccionaron unas formas de la placenta menos invasivas para evitar precisamente estas complicaciones.

La invasividad de la placenta también se da entre los primates, un tema que se revisa en este artículo. Una de las funciones clave de la invasión es la remodelación de las arterias maternas dentro de la pared del útero para asegurar un suministro óptimo de sangre a la placenta. La invasión del trofoblasto y la remodelación arterial se dan en mayor medida en el ser humano, y el fallo de cualquiera de ellas provoca la restricción del crecimiento del feto y la preeclampsia en la madre.

En este trabajo se analiza la importancia de la arteria uterina y el flujo de sangre hacia la placenta para el crecimiento fetal, utilizando las adaptaciones a vivir en grandes altitudes como un experimento de la naturaleza. La gran altitud se asocia con una reducción aproximada en el peso al nacer de 100 g cada 1.000 m de elevación, aunque el efecto es mayor en poblaciones no-indígenas comparadas con las que sí lo son. Se especula que el flujo sanguíneo de la arteria uterina no sólo es una importante línea de suministro, sino también un detonante que estimula los procesos que regulan el metabolismo y el crecimiento tanto del feto como de la placenta.

Por otro lado, la invasión placentaria plantea importantes retos inmunológicos a medida que el trofoblasto interactúa con las células del sistema inmunitario materno. Aquí se revisa esta cuestión y, aunque en la actualidad se desconocen los mecanismos involucrados, se cree que las interacciones con las células del sistema inmunitario innato regulan la invasión del trofoblasto y la remodelación de las arterias espirales.

En el último estudio se demuestra que el crecimiento fetal también está regulado por la impronta genética, y los últimos avances han puesto de manifiesto el vínculo genético y epigenético que existe entre la regulación del crecimiento de la placenta y el del encéfalo. La manipulación de la expresión de estos factores de crecimiento ajusta el peso del feto, y puede tener efectos transgeneracionales.

  1. La tasa de mortalidad materna para el año 2010 a nivel mundial fue de 31.000 fallecimientos según el CIA World Factbook. La TMM es el número anual de muertes de mujeres por cada 100.000 niños nacidos vivos por cualquier causa relacionada o agravada por el embarazo (excluyendo las causas accidentales o incidentales).
  2. Esto es, la unión entre los tejidos de la madre y el feto
Publicado por José Luis Moreno en CIENCIA, 1 comentario
Charla «El hombre no desciende del mono»

Charla «El hombre no desciende del mono»

     Última actualizacón: 8 octubre 2019 a las 11:51

Como ya saben, hace unos días tuve el placer de participar en la presentación en Málaga del evento de divulgación Desgranando Ciencia 2014 bajo un formato muy interesante: ofrecimos un total de tres charlas divulgativas (de los más variados temas) como armazón del acto de presentación tanto de la plataforma Hablando de Ciencia como del evento que celebraremos en Granada en sí mismo.

Pues bien, ya tenemos listo el montaje de la grabación de las charlas que en breve podrán disfrutar íntegras en el canal de YouTube de la plataforma (y de lo que les informaré a través de las redes sociales en las que este blog tiene presencia) pero, para ir abriendo boca, les voy a presentar la charla que di en ese acto.

Los que sigan esta bitácora sabrán que uno de los temas que más me apasionan es el estudio de la evolución humana. Por ese motivo me resulta chocante que en la cultura popular aún persista la idea que el hombre desciende del chimpancé, esto es, que somos el hermano evolucionado de este simio. Con esta charla trato de corregir ese error mediante un breve repaso de los restos fósiles de nuestros antepasados y de cómo la teoría de la evolución explica cómo hemos llegado aquí.

Aquí les dejo el vídeo, el guión de la charla así como las diapositivas (estos últimos disponibles en mi perfil de SlideShare).

Espero que disfruten y me comenten sus impresiones.

Publicado por José Luis Moreno en ANTROPOLOGÍA, VÍDEO, 5 comentarios
Siete días … 19 a 25 de mayo (evolución cráneo)

Siete días … 19 a 25 de mayo (evolución cráneo)

     Última actualizacón: 2 mayo 2018 a las 16:47

EVOLUCIÓN HUMANA

El estudio de las relaciones anatómicas y evolutivas entre cráneo y cerebro evidencia problemas estructurales asociados al gran tamaño de nuestro encéfalo. La relación entre el cerebro y los huesos de la cara a lo largo de la evolución humana pudo causar defectos como la miopía; y los cambios en las áreas parietales pueden habernos hecho más vulnerables a enfermedades neurodegenerativas.

Emiliano Bruner, paleoneurólogo del  Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), ha publicado un artículo sobre craneología funcional en la revista Frontiers in Neuroanatomy, en el que se estudian las relaciones anatómicas y evolutivas entre cráneo y cerebro, y se evidencian posibles problemas estructurales asociados al gran tamaño de nuestro encéfalo.

Se trata de un artículo de revisión, es decir de síntesis del trabajo desarrollado en el laboratorio de Paleoneurología del CENIEH en los últimos años, donde se presentan temas que enlazan los estudios evolutivos en neuroanatomía con la medicina y la neurobiología, y en el que la craneología funcional se muestra desde una perspectiva que une por un lado la biología evolutiva y, por otro lado, los campos biomédicos.

La evolución de un cerebro muy grande, complejo y dispendioso implica ventajas y costes Como explica Emiliano Bruner, las relaciones anatómicas entre cerebro y cráneo o los procesos de metabolismo y termorregulación cerebral interesan tanto al paleontólogo como al cirujano, y son temas íntimamente relacionados con las variaciones del tamaño cerebral.

De hecho, los cambios en las áreas parietales de nuestra especie, al involucrar variaciones importantes en la complejidad anatómica, metabólica y vascular, “pueden haber creado una situación de vulnerabilidad a la neurodegeneración, como ocurre en los procesos asociados con la enfermedad de Alzheimer”, afirma Bruner.

Además según esta publicación, la particular relación entre el cerebro y los huesos de la cara a lo largo de la evolución humana puede estar también relacionada con un conflicto en entre órbitas, globos oculares y lóbulos frontales y el desarrollo de estas áreas, lo que finalmente puede afectar a los procesos asociados a la visión y causar defectos como la miopía.

• Noticia Agencia SINC

• Artículo: Functional craniology and brain evolution: from paleontology to biomedicine (descarga directa en formato PDF)

MEDICINA

Una biofísica española desvela los trucos de un compuesto para ‘congelar’ las células cancerosas. El hallazgo puede servir para perfeccionar el fármaco, empleado ya contra millones de tumores de mama, ovarios y pulmón.

Su laboratorio acaba de descubrir cómo funciona exactamente el Taxol, un hallazgo que “puede conducir a mejores medicamentos contra el cáncer”, según un comunicado de su institución. Para entender su funcionamiento, hay que meterse mentalmente en una célula típica humana, de unas pocas millonésimas de metro. Allí dentro, veríamos el esqueleto de la célula, formado por unos huesos muy especiales: los microtúbulos, unos filamentos que crecen y se encogen. Y también veríamos su libro de instrucciones, el ADN, agrupado en una especie de bastoncillos conocidos como cromosomas.

Para que una célula se divida, los cromosomas deben duplicarse antes, para que la célula madre reparta las dos copias entre sus dos células hijas. En ese proceso, es esencial el movimiento constante de los microtúbulos, creciendo y encogiéndose. Y aquí entra en juego el Taxol.

El compuesto extraído de la corteza del tejo del Pacífico se une a los microtúbulos, “congelándolos”, según el equipo de Nogales, y haciendo imposible que faciliten el reparto de cromosomas de la célula madre a las hijas. “Si la ola desaparece, el surfista no se mueve”, resume gráficamente Nogales. Esto, simplemente, mata a las células en división, provocando efectos secundarios, pero sobre todo aniquila a las células cancerosas, caracterizadas por una multiplicación alocada.

Hasta ahí, el mecanismo de acción del Taxol era más o menos conocido. Ahora, el equipo de Eva Nogales ha ido mucho más allá, mediante la criomicroscopía electrónica, una técnica que permite congelar estructuras para estudiarlas a nivel casi atómico, a temperaturas de unos 180 grados bajo cero.

Gracias a este ojo hiperpreciso, Nogales ha podido observar las tubulinas, unas proteínas que se apilan como ladrillos para formar los microtúbulos. Estos ladrillos, en realidad, se acumulan formando tiras, y estas tiras a su vez se unen para formar los tubos huecos conocidos como microtúbulos, esenciales para la supervivencia de cualquiera de nuestras células.

En condiciones normales, los microtúbulos crecen a un ritmo de 20 tubulinas por segundo, pero en un momento dado dejan de crecer y los tubos huecos se empiezan a deshacer, “como se pela la piel de un plátano”, en palabras de Nogales. Esos plátanos/microtúbulos se pelan rápidamente, a 300 tubulinas por segundo, provocando un movimiento que aprovechan los cromosomas para trasladarse y facilitar la división celular. Pero si se inyecta el antitumoral Taxol a un paciente, el fármaco se fija a las tubulinas y “mantiene rígidas las peladuras del plátano”, según explica Nogales por teléfono desde un tren, tras dar una charla en el Laboratorio Europeo de Biología Molecular en Heidelberg (Alemania). Y si el plátano no se pela, los cromosomas no pueden emplear las peladuras para surfear desde la célula madre a la célula hija. Las células de un tumor dejan de multiplicarse. El extracto del árbol puede vencer al cáncer.

• Noticia Materia

• Artículo: High resolution αβ microtubule structures reveal the structural transitions in tubulin upon GTP hydrolysis

___

El colesterol “malo” ayuda a propagar el cáncer y causar metástasis porque facilita el movimiento de las células y que éstas invadan otros tejidos, según un estudio del Departamento de Biología Celular de la Universidad de Barcelona (UB) y del Centro de Investigación Biomédica CELLEX (IDIBAPS-UB).

Los resultados del estudio muestran que la acumulación en las células de colesterol LDL (low-density lipoproteins) parece clave para potenciar la movilidad celular y que, en cambio, altos niveles de colesterol HDL (high-density lipoproteins) podrían evitar la propagación celular.

El estudio es relevante para entender mejor la metástasis en el cáncer -el proceso por el que las células cancerígenas invaden los tejidos sanos- y contribuye al debate sobre la relación entre los niveles de colesterol y la incidencia de cáncer.

El trabajo se ha realizado a partir de experimentos con cultivos celulares de pacientes con la enfermedad de ‘Niemann-Pick’, que padecen una anomalía genética que provoca la acumulación de colesterol dentro de la célula, lo que causa distintos trastornos motores y neurológicos.

Según Enrich, esta investigación abre nuevas oportunidades terapéuticas respecto al control de la metástasis y a la estrategia que debe seguirse en personas con cáncer que a la vez tienen problemas de colesterol.

“Debe tenerse en cuenta que los fármacos recomendados para regular el colesterol pueden estar modificando la capacidad de migración de las células. Por ello es muy importante avanzar hacia la personalización de los tratamientos“, ha advertido Enrich.

• Noticia EFE

• Artículo: Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries(descarga directa en formato PDF)

NEUROCIENCIA

Investigadores del Consejo Superior de Investigaciones Científicas (CSIC) han hallado un nuevo lugar de generación de células de la subplaca durante el desarrollo de la corteza cerebral. El conocimiento del origen y comportamiento de estas células es crucial para evaluar y prevenir patologías causadas durante el desarrollo del cerebro como el autismo, la esquizofrenia y la parálisis cerebral, entre otras. El estudio, liderado por el investigador del CSIC Juan A. De Carlos, del Instituto Cajal, ha sido publicado en la revista PNAS.

Las células de la subplaca son las primeras células que se generan en la formación de la corteza cerebral, y desempeñan un papel importante en su desarrollo. Estas células son las primeras en proyectar fuera del neuroepitelio cortical (la pieza de tejido donde se va a formar la corteza), abriéndose camino hasta alcanzar el tálamo (un importante centro de conexiones cerebrales); y al mismo tiempo van a recibir a las fibras talámicas, primeros axones (prolongaciones neuronales que conducen el impulso nervioso entre células) en entrar en la corteza, según explica el investigador del CSIC Juan A. de Carlos, del Instituto Cajal, que ha dirigido el estudio con la colaboración de Zoltán Molnár y Anna Hoerder-Suabedissen, de la Universidad de Oxford.

Las primeras sinapsis (vínculos entre células cerebrales) que se realizan en la corteza se establecen entre las fibras talámicas y las células de la subplaca. A su vez, estas células proyectan a capas corticales superiores. Por lo tanto, estas células son de vital importancia para la formación de la corteza cerebral y para su interconexión con estructuras profundas. Si se dan alteraciones en su desarrollo, migración o función, se producen importantes deficiencias que dan lugar a enfermedades más o menos graves, como el autismo, la esquizofrenia y la parálisis cerebral.

Para prevenir este tipo de patologías es necesario conocer muy bien la fecha y los lugares de generación de las células de la subplaca, sus vías de migración y función específica de cada una de las poblaciones que conforman esta tipología celular. Hasta el momento se pensaba que todas estas células se generaban en una única estructura, la zona ventricular del neuroepitelio cortical, y se desplazaban utilizando exclusivamente migraciones radiales.

• Noticia CSIC

• Artículo: Extracortical origin of some murine subplate cell populations.

___

Una nueva investigación en la Universidad de San Luis (EEUU) ha logrado mediante un experimento con ratones, revertir por completo los síntomas de la enfermedad de Alzheimer mediante un compuesto molecular de nueva creación.

El nuevo compuesto desarrollado ha sido bautizado como OL-1 (oligonucleótido antisentido) y fue probado en ratones modificados genéticamente para desarrollar alzhéimer. Como grupo de control, utilizaron un compuesto antisentido al azar para ver la respuesta de otro grupo de ratones también con síntomas de alzhéimer. Tras inyectar el compuesto OL-1 al primer grupo, los investigadores descubrieron que los síntomas del alzhéimer desaparecieron, incluyendo la inflamación cerebral y el déficit de aprendizaje y memoria.

Todos los ratones fueron sometidos a una serie de pruebas para medir el aprendizaje, la memoria y el comportamiento lógico (como reconocer un objeto o encontrar el camino a través de un laberinto). El grupo inyectado con un compuesto al azar no demostró mejoría alguna como cabía esperar. El grupo de ratones al que se le había distribuido OL-1 demostró una mejora en el aprendizaje y la memoria.

El estudio, que ha sido publicado en la revista Journal of Alzheimer Disease, explica que el compuesto actúa bloqueando el ARN mensajero que estimula la producción de exceso de proteína beta-amiloide, un sello distintivo que causa la enfermedad de Alzheimer.

“Nuestros hallazgos refuerzan la importancia de la proteína beta-amiloide en el proceso de la enfermedad de Alzheimer. Sugieren que un antisentido que se dirige el precursor de la proteína beta-amiloide es una terapia potencial para explorar a revertir los síntomas de la enfermedad de Alzheimer”, afirma Susan Farr, líder del estudio.

• Noticia Muy Interesante

• Artículo: Central and Peripheral Administration of Antisense Oligonucleotide Targeting Amyloid-β Protein Precursor Improves Learning and Memory and Reduces Neuroinflammatory Cytokines in Tg2576 (AβPPswe) Mice

PALEONTOLOGÍA

Pau, Lluc, Jordi y sus congéneres primates cuyos fósiles han sido hallados en los yacimientos catalanes del Vallès-Penedès (de ahí sus nombres) se extinguieron a causa de la rutina en su dieta. Esta es la teoría que exponen en un artículo en la revista especializada Plos One un equipo de investigadores del Instituto Catalán de Paleontología Miquel Crusafont.

Los primates hominoideos del Mioceno —criaturas en el árbol genealógico común de los humanos y los grandes monos [sic]—, de los que forman parte los especímenes descubiertos en Cataluña, se dispersaron por Eurasia hace 14 millones de años. La especialización alimentaria permitió su expansión pero a la vez se convirtió en un riesgo.

El estudio, que infiere la dieta de cinco especies de hominoideos de la Península Ibérica, entre ellos Pierolapithecus catalaunicus, a la que pertenece el famoso Pau, cuyos restos aparecieron en Els Hostalets de Pierola, Anoiapithecus breviroostris (Lluc) e Hispanopithecus laietanius (Jordi), se ha realizado a partir del microdesgaste que presentan los dientes de los fósiles y que indica qué comían. Cada tipo de alimento, recalcan los científicos, produce un abrasión microscópica característica en el esmalte dentario que los paleontólogos pueden identificar y asociar a un tipo de dieta dando sentido a la frase “somos lo que comemos” (incluso los monos del Mioceno).

El análisis ha revelado que las diferentes especies tenían una alimentación diversa: unos alimentos duros como frutos con cáscara y semillas y otros frutos más blandos. Cuando los alimentos favoritos empezaron a escasear por los cambios en el clima, los viejos simios del Mioceno no fueron capaces de adaptarse y se extinguieron hace entre 12 y 9 millones de años.

• Noticia El País

• Artículo: Dietary Specialization during the Evolution of Western Eurasian Hominoids and the Extinction of European Great Apes (descarga directa en formato PDF)

FÍSICA

Físicos del Imperial College de Londres han descubierto la forma de transformar la materia en luz ―una hazaña que parecía imposible cuando la idea fue teorizado por primera vez hace 80 años.

Breit y Wheeler sugirieron que debería ser posible convertir la luz en materia rompiendo juntas sólo dos partículas de luz (fotones), para crear un electrón y un positrón ―el método más simple de convertir luz en materia jamás predicho. Aunque el cálculo era teóricamente sólido, Breit y Wheeler aseguraron que nunca esperarían que nadie pudiera demostrar físicamente su predicción. Nunca se ha observado en el laboratorio y los experimentos anteriores han requerido de partículas de alta energía masivas.

La nueva investigación, publicada en Nature Photonics, muestra por primera vez cómo la teoría de Breit y Wheeler se podía probar en la práctica. Este “colisionador de fotones”, convertiría la luz directamente en materia mediante una tecnología que ya está disponible, sería un nuevo tipo de experimento de alta energía. Este experimento podría recrear un proceso que fue muy importante en los primeros 100 segundos del universo y que también se ve en los estallidos de rayos gamma, que son las mayores explosiones del universo y uno de la física  y uno de los misterios sin resolver más grandes de la física.

El experimento de colisionador que han propuesto los científicos implica dos pasos principales. En primer lugar, los científicos usarían un láser de alta intensidad extremadamente potente para acelerar los electrones hasta justo debajo de la velocidad de la luz. Entonces se dispararían estos electrones contra una placa de oro para crear un haz de fotones un billón de veces más energéticos que la luz visible.

La siguiente etapa del experimento implica una pequeña pieza de oro llamada hohlraum (en alemán “cuarto vacío”). Los científicos podrían disparar un láser de alta energía en la superficie interna de la placa de oro para crear un campo de radiación térmico, lo que generaría una luz similar a la luz emitida por las estrellas.

Entonces dirigirían el haz de fotones de la primera etapa del experimento a través del centro del hohlraum, haciendo que los fotones de las dos fuentes chocaran y formaran electrones y positrones. Así, sería posible detectar la formación de los electrones y positrones cuando salieran de la pieza de oro.

• Noticia Science Daily

• Artículo: A photon–photon collider in a vacuum hohlraum

ASTRONOMÍA

En esta colorida nueva imagen obtenida por el telescopio MPG/ESO de 2,2 metros en el Observatorio La Silla de ESO, en Chile, vemos el cúmulo estelar NGC 3590. Estas estrellas brillan frente a un impresionante paisaje de manchas oscuras de polvo y coloridas nubes de gas brillante. Este pequeño encuentro estelar revela a los astrónomos algunas claves sobre cómo se forman y evolucionan estas estrellas, al tiempo que nos da pistas acerca de la estructura de los brazos espirales de nuestra galaxia.

NGC 3590 es un pequeño cúmulo abierto de estrellas que se encuentra a unos 7.500 años luz de la Tierra, en la constelación de Carina (la Quilla). Está formado por docenas de estrellas vagamente ligadas por la gravedad y tiene unos 35 millones de años.

El nombre de este brazo — Carina o la Quilla — es absolutamente apropiado. Estos brazos espirales son, en realidad, ondas de gas y estrellas amontonadas que barren el disco galáctico, desencadenando brillantes estallidos de formación estelar y dejando en su estela cúmulos como NGC 3590. Encontrando y observando estrellas jóvenes como las de NGC 3590, es posible determinar las distancias a las diferentes partes de este brazo espiral, aprendiendo más sobre su estructura.

Un cúmulo abierto típico pueden contener desde unas pocas decenas a unos pocos miles de estrellas, proporcionando a los astrónomos pistas sobre la evolución estelar. Las estrellas en un cúmulo como NGC 3590 nacen de la misma nube de gas y más o menos al mismo tiempo, haciendo de estos cúmulos los lugares perfectos para poner a prueba las teorías sobre cómo se forman y evolucionan las estrellas.

• Noticia ESO

ARQUEOLOGÍA

 

“¿Dónde están las momias?”, es la pregunta recurrente que el personal del Museo Británico debe atender cada uno de los días del año, porque la fascinación del público ante esos cuerpos embalsamados en el Antiguo Egipto no tiene parangón con ninguna de las otras y extraordinarias joyas atesoradas en su sede londinense. Descubrir que bajo los vendajes y sarcófagos yacen, por ejemplo, los restos de una niña cantante que fuera estrella de su tiempo es uno de los nuevos incentivos que la institución presenta desde esta semana, gracias a las herramientas tecnológicas de última generación que han permitido recuperar biografías con varios milenios a sus espaldas.

Desde la veneración hacia esa chiquilla que integraba uno de los coros del templo de Tebas, hasta el atroz dolor de muelas que sufría un egipcio de clase privilegiada, pasando por el tatuaje cristiano de una sudanesa de la ribera del Nilo, las identidades de esos personajes que se esconden tras las piezas de egiptología del Museo Británico acaban de ser desveladas por los avances de la tomografía computarizada. En otras palabras, al igual que los escáneres médicos radiografían nuestras dolencias y el interior de nuestros cuerpos, ocho de las 120 momias que conforman una de las grandes colecciones del mundo han sido examinadas hasta el mínimo detalle en hospitales de la red pública sanitaria británica, en una suerte de “excavación electrónica” de la historia.

El resultado de estas investigaciones se exhibirá hasta el 30 de noviembre en imágenes tridimensionales que acompañan a las momias —protegidas en urnas de cristal— en la muestra Vidas antiguas, nuevos descubrimientos. La exposición consigue desvelar algunos de los secretos de ocho personajes que vivieron en Egipto y Sudán entre el año 3.500 antes de Cristo y el 700 sin necesidad de desenvolver los vendajes de esos cuerpos embalsamados y extremadamente frágiles, que por ello permanecen intactos desde que la colección empezara a recalar en el museo a mediados del siglo XVIII. Las primeras indagaciones con rayos X datan de la década de los sesenta, pero sólo la tecnología de los escáneres, que empezó a desarrollarse 30 años más tarde, han permitido una visualización tan precisa del interior de los sarcófagos.

• Noticia El País

Publicado por José Luis Moreno en SIETE DÍAS, 1 comentario
Para entender la paleoantropología. 2ª parte: La evolución

Para entender la paleoantropología. 2ª parte: La evolución

     Última actualizacón: 10 agosto 2018 a las 06:39

Les propongo que hagamos un breve y sencillo experimento. Prueben a introducir en el buscador de imágenes de Google los términos “evolución”, “evolución humana” o “evolución del hombre”. Verán desfilar ante sus ojos ―en múltiples variantes pero con un claro denominador común― una de las imágenes que más daño ha hecho a la comprensión de la evolución de nuestra especie:

Sigan leyendo esta anotación porque espero que al final comprendan bien el porqué.

En la primera parte de esta serie analizamos qué es la paleoantropología y cómo se forma la “materia prima” ―por decirlo de alguna forma― de su objeto de estudio: los restos fósiles de los organismos que vivieron en el pasado. Cuando estos fósiles comenzaron a ver la luz y nació la paleontología moderna, gracias sobre todo al trabajo de Georges Cuvier, se inició un estudio sistemático de los mismos que llevó a la comprensión de que la vida tiene una historia, que existe variabilidad, y que se puede analizar el cambio en la morfología de los animales extintos. Este hecho fundamental, junto con algunos otros, llevaron al asentamiento de la idea de la evolución de las especies.

No vamos a hacer un estudio pormenorizado de las diversas corrientes que llevaron al planteamiento de la teoría de la evolución por Charles Darwin (y Alfred Russel Wallace) en 1859, ni tampoco vamos a detallar los avatares por los que ha atravesado la disciplina desde entonces ya que supondría alargar en exceso este texto. Lo que sí pretendo es ofrecer una visión clara y comprensible acerca de qué es la evolución biológica y cómo funciona.

En latín clásico, la palabra evolutio significa “desenrollar o abrir un libro” (detalle), por lo que podemos traducirla como «leer», ya que los libros y documentos eran, en época romana, rollos de papiro o pergamino que había que desenrollar para poder leerlos. El verbo relacionado, evolvere, tiene como raíz el verbo volvo que significa “girar, dar vueltas” (detalle). Lo que estos términos sugieren es una idea de movimiento, de un camino que se abre ante nosotros y que podemos seguir. Curiosamente, a pesar de que en la actualidad asociamos de forma casi inmediata el término «evolución» con la obra cumbre de Charles Darwin titulada “El origen de las especies”, éste prefería hablar de “teoría de la descendencia con modificación”; puntualizando que esa modificación no estaba predeterminada, orientada o dirigida, sino que era producida por lo que llamó la «selección natural». Tanto es así que en la primera edición de ese trascendental libro, la palabra «evolución» sólo aparece una vez, y es precisamente al final del mismo (de hecho es la última palabra de la obra):

Hay grandeza en esta concepción de que la vida, con sus diferentes facultades, ha sido alentada en unas cuantas formas o en una sola, y que, mientras este planeta ha ido girando según la constante ley de la gravitación, se han desarrollado [evolved] y se están desarrollando, a partir de un comienzo tan sencillo, infinidad de formas cada vez más bellas y maravillosas.

[…] from so a simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved.

La evolución no busca, pero encuentra *

Siguiendo los postulados de Francisco Ayala, podemos decir que la teoría de la evolución se ocupa de tres materias diferentes. La primera es el hecho mismo de la evolución, es decir, el hecho de que las especies cambian con el paso del tiempo y que es posible describir su historia. Si lo hacemos, descubrimos que todas ellas están emparentadas entre sí al tener un antepasado común. Podemos resumir este primer punto con la afirmación de que todos los seres vivos descienden de antepasados comunes, que son cada vez más diferentes de sus descendientes cuanto más tiempo ha pasado entre unos y otros.

Representación gráfica de la ascendencia común (por el autor).

La segunda materia es la historia de la evolución. A estudiar la evolución tratamos de establecer las relaciones de parentesco entre unos organismos y otros, así como determinar, de forma tan precisa como sea posible, en qué momento se produjo la separación entre los distintos linajes que llevan a las especies vivas en la actualidad (o saber en qué momento quedaron extintas). La evolución biológica implica por tanto el origen de nuevas especies.

La tercera y última materia se refiere a las causas de la evolución. Quizás sea este el punto que en la actualidad genera más debate en la comunidad científica, y también el más importante. Una vez sentado que los organismos cambian y que se diferencian cada vez más con el paso del tiempo, se vuelve esencial comprender los mecanismos o los procesos que causan esa evolución. Darwin, por ejemplo, describió el mecanismo de la selección natural, el proceso que explica la adaptación de los organismos a su ambiente y la evolución de órganos y funciones. Otros procesos evolutivos importantes son los relacionados con la genética (desconocida para Darwin).

Bueno, hasta ahora hemos hablado de muchas cosas pero no hemos explicado qué dice la teoría de la evolución. Como hemos apuntado, la evolución biológica es el proceso de cambio y diversificación de los organismos en el tiempo (y en términos genéticos, el proceso de cambio en la constitución genética de los organismos a través del tiempo). Actualmente, la teoría de la evolución combina las propuestas de Charles Darwin y Alfred Russel Wallace con las leyes de la herencia descritas por Gregor Mendel, así como otros avances posteriores en genética. Según esta teoría, que recibe el nombre de “síntesis moderna” o “teoría sintética”, la evolución se define como un cambio en la frecuencia de los alelos de una población a lo largo de las generaciones. Este cambio puede darse por diferentes mecanismos tales como la selección natural, la deriva genética, la mutación y la migración o flujo genético (más bajo explicaremos brevemente estos conceptos).

El argumento central de Darwin parte de la existencia de variaciones que se heredan. Las variaciones favorables, desde el punto de vista del organismo, son las que incrementan su posibilidad de sobrevivir, pero no vivir por vivir, sino vivir para dejar descendencia, para transmitir su carga genética. La selección natural surge como consecuencia de diferencias en la supervivencia, la fertilidad, el ritmo de desarrollo, el éxito en encontrar pareja, o en cualquier otro aspecto del ciclo vital del organismo. Todas estas diferencias pueden ser aglutinadas bajo el término de reproducción diferencial puesto que todas ellas afectan al número de descendientes que dejan los organismos. Las variaciones favorables serán entonces conservadas y multiplicadas de generación en generación a expensas de las menos ventajosas, precisamente porque quienes las portan viven lo suficiente como para transmitirlas a su descendencia con más eficacia. A medida que las variaciones más útiles van apareciendo, irán reemplazando a las menos ventajosas, y como consecuencia de ello, los organismos cambiarán en su apariencia y configuración. Este proceso de multiplicación de variaciones ventajosas, a costa de las que no lo son, es lo que Darwin llama selección natural.

Como resultado de tal proceso, los organismos estarán mejor adaptados a su ambiente. La razón de ello es que son precisamente las variaciones que mejoran la adaptación al ambiente las que aumentan la probabilidad de que un organismo sobreviva y se multiplique. El proceso se facilita por el hecho de que los ambientes en que los organismos viven también están en continuo cambio. Estos cambios ambientales incluyen no solo los relacionados con el clima y otros aspectos físicos, sino también el entorno biológico: los depredadores, los parásitos y los competidores con los que un organismo interactúa le afectan de manera importante. Al mismo tiempo, el entorno biológico de una especie cambia sin cesar puesto que las especies que constituyen ese entorno están evolucionando a su vez. De esta forma, el proceso de evolución por selección natural implica una retroalimentación que hace que la evolución continúe indefinidamente.

François Jacob

Cuando Darwin publicó “El origen de las especies” no tenía ninguna prueba de la existencia de la selección natural y elaboró su teoría sólo por inferencia. Ernst Mayr ha esquematizado los argumentos de Darwin en cinco hechos y tres deducciones que son muy útiles para comprender la esencia de esta cuestión:

  • Hecho número uno: Todas las especies tienen una gran fecundidad potencial que debería producir un crecimiento muy rápido de las poblaciones, siempre que todos sus miembros sobreviviesen y se reprodujesen.
  • Hecho número dos: salvo fluctuaciones anuales u ocasionales, el número de miembros de las poblaciones se mantienen estables.
  • Hecho número tres: los recursos naturales son limitados y en un entorno relativamente estable se mantienen más o menos constantes (debemos señalar que por recursos se entiende tanto el espacio físico como el alimento disponible).
  • Primera deducción: teóricamente, el número de individuos debería sobrepasar rápidamente las capacidades de mantenimiento del entorno; este desequilibro va a producir una “lucha por la existencia” que sólo permitirá que se reproduzca una pequeña parte de los miembros de las poblaciones. En realidad, Darwin empleó el término “lucha” de forma metafísica ―a pesar de algunas interpretaciones malintencionadas― por lo que hoy hablamos de “competencia”.
  • Hecho número cuatro: dos individuos de una población nunca son exactamente iguales y toda población manifiesta una gran variabilidad. Esta fórmula pone de manifiesto algunos datos esenciales de la revolución darwiniana. Los autores previos manejaban un concepto de especie según el cual existe un tipo, un modelo de cada especie, que se reproduce de forma inmutable (corriente que ha venido a llamarse fijismo), donde las variaciones observadas son meros accidentes de “copia”. En cambio, para Darwin la variabilidad es una propiedad fundamental de la especie; no puede existir un tipo privilegiado puesto que todos los individuos son igualmente representativos de la especie con una constitución única.
  • Hecho número cinco: gran parte de esta variabilidad es heredable. La variabilidad por tanto es el material del cambio evolutivo.
  • Segunda deducción: la supervivencia en este ambiente de competencia no se debe al azar, sino que depende en gran parte de la constitución genética de los supervivientes. Esta supervivencia desigual constituye el proceso de selección natural (hoy sabemos que esta afirmación debe ser matizada ya que, dependiendo de las especies, la parte debida al azar o al determinismo genético en la supervivencia varía en límites muy amplios, aunque siempre existe una combinación entre ambos).
  • Tercera deducción: a lo largo de las generaciones, el proceso de selección natural conduce a un cambio gradual de las poblaciones, es decir, a la evolución con producción de nuevas especies.  Este proceso de diversificación está contrarrestado por la extinción de las especies: se estima que casi el 100% de todas las especies que han existido en el pasado han desaparecido sin dejar descendientes. Las especies actuales, estimadas en unos 10 millones (las descritas por los biólogos son menos de 2 millones) son el saldo entre la diversificación y la extinción.

Vamos a explicar cómo opera la selección natural con un ejemplo que se ha convertido en clásico: el melanismo industrial. Tenemos una especie de polilla cuyos miembros pueden ser de color oscuro o claro, en este caso nos referimos concretamente a la polilla del abedul Biston betularia —en la imagen de abajo, la forma clara (definida como «común») está rotulada con el número 2; y la forma oscura (definida como «carbonaria») rotulada con el número 1.

En 1848, en pleno apogeo de la revolución industrial en Inglaterra, los naturalistas se dieron cuenta de que en áreas industriales, contrariamente a lo que pasaba en zonas no contaminadas, las formas oscuras de esta polilla predominaban sobre las claras.

La explicación tiene que ver con la contaminación ambiental: el hollín de las fábricas mata los líquenes grisáceos-claros que se encuentran sobre la corteza de los abedules, donde estas polillas pasan gran parte de su tiempo, haciendo al mismo tiempo que esa corteza se vuelva más oscura. A partir de esta evidencia, H. B. D. Kettlewell llevó a cabo una serie de experimentos que demostraron que las formas oscuras se camuflaban mejor de las aves depredadoras que la claras en la corteza de los árboles, siendo de esta forma favorecidas por la selección —en la imagen superior vemos una polilla común sobre una corteza de abedul sin contaminar (3), y en la imagen siguiente (4) ambas polillas sobre la corteza ennegrecida por el hollín de las fábricas. En este caso concreto, el color oscuro se convierte en un rasgo adaptativo porque sus portadores sobreviven más que los de color claro.

Pero esta ventaja de la forma oscura no tendría ninguna trascendencia si no fuese hereditaria. Dado que el color oscuro esta determinado por un tipo (o alelo) de un gen, mientras que el color claro lo está por otro alelo del mismo gen, el que las polillas oscuras dejen más descendientes implica que el alelo oscuro aumentará su representación en la población de la siguiente generación. Las adaptaciones son, por tanto, aquellas características que aumentan su frecuencia en la población por su efecto directo sobre la supervivencia o el número de descendientes que dejan aquellos individuos que la portan. En nuestro ejemplo, las formas claras eran miméticas en las zonas no contaminadas, siendo aquí seleccionadas a favor y, por tanto, más numerosas.

En este punto no quiero dejar pasar la oportunidad de traer a colación al genial Stephen Jay Gould, un gran científico y enorme divulgador, que era capaz de unir ciencia y arte cada vez que nos explicaba cualquier concepto:

la formulación básica ―el esqueleto― de la selección natural es un argumento de una simplicidad desarmante, basado en tres hechos innegables (sobreproducción de descendencia, variación y heredabilidad) y una inferencia silogística: la selección natural, o la afirmación de que los organismos con más éxito reproductivo serán, en promedio, las variantes que, por azar, resulten estar mejor adaptadas a los entornos locales cambiantes, las cuales, por herencia, transferirán a sus descendientes sus rasgos favorecidos.

Para mostrarnos gráficamente su visión de la teoría de la evolución escogió una figura procedente de la edición latina de 1747 de una obra precursora en la historia de la paleontología: el tratado de Agostino Scilla titulado La vana speculazione disingannata dal senso (La vana especulación desengañada por los sentidos). La obra fue publicada en italiano en 1670 y, entre otras bellas ilustraciones, cuenta con una etiquetada “coral articulado presente en gran abundancia en los acantilados y colinas de Messina”:

Gould nos explica que el tronco central del coral ―la teoría de la selección natural (1)― no puede cortarse porque la criatura moriría. Este tronco central se divide luego en un número limitado de ramas principales, que él llamó “los puntales básicos” (2, 3 y 4) y que se corresponden con las tres partes esenciales de la teoría darwiniana (sobreproducción de descendencia, variación y heredabilidad): son tan indispensables que la eliminación de cualquiera de ellas supondría poner en entredicho la teoría al completo de forma que sería necesario rebautizar la nueva estructura básica. Por último, hay otros posibles puntos de corte que, si bien obligan a repensar algunos conceptos, no suponen poner en peligro el esquema esencial. En estas partes más alejadas del tronco central podemos incluir el equilibrio puntuado, la teoría neutralista etc.

Mecanismos evolutivos

Ya hemos visto el principal mecanismo de cambio evolutivo, la selección natural. Pero como también hemos apuntado, existen otros que vamos a comentar brevemente a continuación (en futuras anotaciones los veremos con más detalle).

Las frecuencias génicas pueden cambiar por razones puramente aleatorias (lo que se llama deriva genética). En cada generación se produce un sorteo de genes (llamado recombinación) durante la transmisión de gametos de los padres a los hijos. La mayoría de los organismos son diploides, es decir, tienen dos copias de cada gen (una heredada de la madre y otra del padre). Sin embargo, los gametos de estos organismos portan solo uno de los dos ejemplares (alelos) de cada gen. El que un gameto lleve un alelo u otro es una cuestión de azar. Como el único componente que se transmite de generación en generación es el material genético (los genes), el que un individuo deje más descendientes implica que sus variantes génicas (alelos) estarán más representadas en la siguiente generación.

La deriva genética produce un cambio aleatorio en la frecuencia de los alelos de una generación a otra, resultando que estadísticamente se produce una pérdida de los alelos menos frecuentes y una fijación de los más frecuentes. Como es de esperar, este mecanismo provoca una disminución en la diversidad genética de la población y tiende a homogeneizar el acervo genético, motivo por el que la magnitud de los cambios está inversamente relacionada con el tamaño de la población: cuanto mayor sea el número de individuos en una población, menor será el efecto de la deriva genética. Podemos ilustrar este mecanismo con el clásico ejemplo de lo que sucede cuando lanzamos una moneda al aire. Si lanzamos una moneda dos veces, no nos sorprende que salgan dos caras, aun cuando eso significa que sale cara el 100% de las veces. Sin embargo, sí resultaría sorprendente y sospechoso que salieran 20 caras seguidas en 20 tiradas, que es también el 100% de los casos. Uno espera que la proporción de caras obtenidas en una serie de tiradas se aproxime a 0,5 (50%) cuando el número de tiradas es bastante alto.

La relación es la misma con respecto a la deriva genética. Cuanto mayor sea el número de individuos en la población, menor será la diferencia entre las frecuencias de una generación y la siguiente, aunque no debemos olvidar que lo que cuenta no es el número total de individuos en la población, sino su “tamaño eficaz”. El tamaño eficaz se define por aquellos individuos que dejan descendientes: la razón es que sólo los individuos reproductores transmiten sus genes a la generación siguiente, y si éstos son muy pocos, las consecuencias de la deriva pueden ser grandes (a efectos de la deriva genética, la existencia de pocos individuos reproductores, aunque la población total sea muy grande, es igual a una población muy pequeña). En general, para muchas clases de organismos se calcula que el tamaño efectivo de la población es aproximadamente un tercio del número total de individuos.

Los efectos de la deriva genética son normalmente pequeños de una generación a otra, dado que la mayoría de las poblaciones naturales constan de miles de individuos reproductores. Pero los efectos sobre muchas generaciones pueden ser importantes. Si no hubiera otros procesos de cambio evolutivo, tales como el de selección natural y el de mutación, las poblaciones llegarían al final a tener un solo alelo de cada gen. La razón es que tarde o temprano uno u otro alelo sería eliminado por la deriva genética. Debido a la mutación, los alelos desaparecidos de una población pueden reaparecer de nuevo y, si unimos a la ecuación la selección natural, podemos comprender que la deriva genética no tiene consecuencias importantes en la evolución de las especies salvo en aquellas que constan de poquísimos individuos.

Y este es precisamente el supuesto que Ernst Mayr llamó «efecto fundador». Variaciones fortuitas en las frecuencias alélicas similares a las debidas al efecto fundador tienen lugar cuando las poblaciones pasan a través de un «cuello de botella». Cuando el clima u otras condiciones son desfavorables, es posible que las poblaciones sufran una pérdida drástica de sus individuos y corran el riesgo de llegar a extinguirse. Sin embargo, si superan esa situación dramática, las poblaciones pueden recobrar su tamaño normal con el paso del tiempo aunque los genes portados por todos los miembros derivarán de los pocos genes presentes originalmente en los fundadores o supervivientes.


Representación gráfica de un cuello de botella poblacional (wikimedia commons).

En la historia evolutiva de nuestra especie se ha dado el caso de que las tribus eran diezmadas con frecuencia a causa de diversas enfermedades, bruscos cambios climáticos y otras circunstancias, aunque por suerte para nosotros, se recobraban a partir de los supervivientes o gracias a los inmigrantes de otras tribus. De esta forma, las diferencias entre las poblaciones actuales de seres humanos en la frecuencia de algunos genes parecen ser, al menos en arte, el resultado de los cuellos de botella por los que pasaron las poblaciones humanas primitivas.

Por otro lado tenemos la mutación. Podemos definir una mutación como cualquier cambio estable y heredable en la secuencia de nucleótidos del ADN. Cuando dicha mutación afecta a un sólo gen se denomina mutación génica; cuando es la estructura de uno o varios cromosomas la que se ve afectada, mutación cromosómica; y cuando una o varias mutaciones provocan alteraciones en todo el genoma se denominan mutaciones genómicas.

La tasa de mutación de un gen o una secuencia de ADN es la frecuencia en la que se producen nuevas mutaciones en ese gen o en la secuencia en cada generación. Una alta tasa de mutación implica un mayor potencial de adaptación en el caso de un cambio ambiental, pues permite a los individuos disponer de más variantes genéticas, lo que aumenta la probabilidad de que surja la variante adecuada necesaria para adaptarse al cambio ambiental. Del mismo modo, y como contrapartida, una alta tasa de mutación aumenta el número de mutaciones perjudiciales o deletéreas de los individuos y, por tanto, aumenta también la probabilidad de extinción de la especie.

Por lo tanto, una mutación en un lugar clave puede producir un cambio de características del organismo, que se presenta súbita y espontáneamente, y que se puede heredar o transmitir a la descendencia. Una vez en marcha, la selección natural actuará sobre ese cambio, manteniéndolo o eliminándolo en el caso de que permita o no al organismo adaptarse mejor al ambiente. También sucede en muchas ocasiones que una mutación no produce ningún efecto determinante.

Por último, el intercambio de genes entre poblaciones debido a la migración de los  individuos entre poblaciones es otro factor importante de cambio genético. Si dos poblaciones difieren en las frecuencias de los alelos de algunos de sus genes, entonces el intercambio genético entre individuos de las poblaciones emigrante y local producirá un cambio de las frecuencias de los genes en cada una de ellas. Las migraciones humanas durante la expansión neolítica por ejemplo determinaron significativamente el tipo y la cantidad de variación genética de nuestra especie.

La sistemática o cómo clasificamos los organismos

Una vez que hemos analizado la teoría de la evolución y comprendido la enorme diversidad biológica que es capaz de generar la selección natural, podemos entender la importancia que tiene contar con un sistema que permita clasificar nuestro conocimiento del mundo animal, no sólo por necesidades intelectuales y de organización, sino porque un buen sistema de este tipo permite extraer importantes conclusiones evolutivas.

En biología, la sistemática es el estudio de la identificación, la taxonomía y la nomenclatura (estas últimas son disciplinas auxiliares que tratan del análisis de las características de un organismo con el propósito de clasificarlo y nombrarlo conforme a unas reglas establecidas). Así, la sistemática trata del estudio de la clasificación de las especies con arreglo a su historia evolutiva. Inicialmente su interés se centró en la observación de los distintos organismos, actividad que permitió una rápida acumulación de datos descriptivos, lo que a su vez llevó a mediados del siglo XVIII a la revolución de Carl von Linné, quien estableció normas precisas para nombrar y clasificar los seres vivos (para más información ver esta anotación). Por lo tanto, la sistemática se ocupa de la diversidad biológica tanto en un plano descriptivo como en el explicativo o interpretativo.

¿Y qué método se emplea para llevar a cabo esta clasificación? El campo que ahora nos interesa, el de la paleontología humana, vivió una revolución gracias a la cladística, un método de clasificación planteado por el entomólogo alemán Willi Henning en 1950 en su obra Grundzüge einer Theorie der phylogenetischen Systematik (Fundamentos de una teoría de la sistemática filogenética). Es un método de clasificación que solo utiliza líneas de descendencia en lugar de parecidos morfológicos para deducir parentescos evolutivos y que agrupa estrictamente a los organismos en función de su proximidad relativa a un antepasado común.

Expliquemos un poco mejor esta cuestión: lo que hace la cladística es agrupar a las especies en “clados”, que significa “un grupo, una rama del árbol filogenético” (o árbol evolutivo, los dos términos son prácticamente sinónimos). Para ello se utiliza como criterio de reconocimiento de pertenencia al grupo (o clado) la identificación de al menos un carácter apomorfo compartido por todos los miembros de ese grupo y heredado de su especie ancestral (una apomorfia es un carácter nuevo evolucionado a partir de otro preexistente. El carácter original y el derivado forman una pareja homóloga). Por tanto, la idea central es la llamada monofilia estricta, según la cual un grupo es monofilético si todos los organismos incluidos en él han evolucionado a partir de un antepasado común. De esta manera, un clado incluirá a un grupo de especies y a su antepasado común (el fundador del clado) a partir del cual se diversificaron ―al clado se le denomina también “grupo natural” (porque es un reflejo de la verdadera historia evolutiva) y “grupo monofilético” (porque tiene un solo origen).

Tipos de clados (wikimedia commons).

Para formar los clados a partir de las especies con las que se está trabajando, la cladística divide los caracteres en dos tipos. Unos son los caracteres primitivos, que se heredan de un antepasado anterior al nacimiento del clado y por eso se encuentran también en otros clados. Otros caracteres son los llamados derivados, que sólo se observan dentro del clado porque aparecieron con la especie fundadora del mismo. Son los caracteres derivados los únicos que cuentan en el análisis filogenético. Los caracteres “primitivos” se llaman en cladística “plesiomorfias”, y para los “derivados” se usa el término “apomorfia” como hemos indicado más arriba.

Para concluir con este apartado, decir que la cladogénesis hace referencia a la diversificación o multiplicación de linajes, de clados. Por ejemplo, la diversificación de los linajes que llevan al hombre, el chimpancé y el gorila, a partir de un linaje único que existía entre hace ocho y diez millones de años es un ejemplo de cladogénesis. Los ejemplos de cladogénesis son innumerables puesto que la evolución ha producido la extraordinaria diversidad del mundo viviente. Como términos sinónimos que podemos encontrarnos para referirse a la cladogénesis son “evolución divergente” y “evolución diversificadora”.

Con toda la información que hemos analizado sobre sistemática y clasificación, podemos comprender que la evolución de los seres vivos puede ser representada como un árbol, un árbol cuyas ramas se van dividiendo a medida que se alejan de la base del tronco. Esta base representa la especie ancestral común a todas las del árbol, y la ascensión hacia la copa representa el paso del tiempo. Sus ramas se corresponden a los linajes en evolución, algunos de los cuales eventualmente se extinguen, mientras otros llegan hasta el presente. Tales “árboles” se denominan “dendrogramas” (del griego dendron árbol), “árboles filogenéticos” o simplemente, “filogenias”:

 


Cladograma que representa la diversificación entre los gibones, orangutanes, gorilas, chimpancés y humanos.

Conclusiones

Espero que el concepto de evolución y los diferentes mecanismos por los que se produce se hayan entendido bien (en caso contrario, en los comentarios podemos incidir en los aspectos que sea necesario reforzar). Dicho esto, hay quienes sostienen que Darwin no estuvo muy acertado al elegir la palabra «selección», ya que este término parece indicar que existe en la naturaleza alguien que selecciona deliberadamente los organismos mejor adaptados. En realidad, como ya hemos explicado, los individuos «seleccionados» son sencillamente los que sobreviven después de que se hayan eliminado de la población los individuos peor adaptados o menos afortunados. Por eso se ha propuesto sustituir la palabra selección por la frase «eliminación no aleatoria». En definitiva, se usa la palabra «selección» para designar el conjunto de circunstancias responsables de la eliminación de algunos individuos.

Volvamos ahora a la imagen con la que iniciábamos esta anotación. Esta imagen es engañosa y contraproducente para comprender la evolución humana por dos motivos fundamentales. El primero guarda relación con la errónea idea de «dirección», de evolución hacia la complejidad y la «perfección» que nos transmite. Vemos una serie de pasos «evolutivos» que van desde el ser más pequeño y atrasado hacia el más erguido, musculoso y de tez clara que se representa al final. La idea que se quiere transmitir es obvia: el ser humano ha evolucionado de un animal pequeño y peludo para convertirse, con el paso del tiempo, en la cima de la naturaleza. Sin embargo, las cosas no han sucedido de forma tan aséptica; la evolución del hombre no ha sido una limpia carrera de relevos en la que, tras cinco cómodas etapas, ha surgido el ser humano moderno en la meta. Aunque lo explicaremos con más detalle en una anotación posterior, la evolución de nuestra especie se asemeja más a un arbusto que a un árbol. Los últimos avances en genética nos dicen que nuestro pasado evolutivo ha sido más intrincado, mucho más complejo de lo que nunca habíamos imaginado. Y algo muy importante, muchos de los linajes de nuestros antepasados se extinguieron sin más.

El segundo motivo por el que esta imagen no ha sido afortunada tiene que ver con la ya famosa frase «el hombre desciende del mono». El primer ser de la imagen tiene un parecido enorme con un chimpancé, y es un error muy común ―demasiado común― pensar que descendemos de ellos o de cualquier otro simio actual (gorilas u orangutanes).

Debemos tener claro que el hombre no desciende del chimpancé, ni del gorila, ni del mono aullador, ni del macaco japonés, sino de primates que hoy en día ya no existen. A la pregunta de si el hombre desciende del mono, la respuesta de un biólogo evolutivo sería un rotundo «no», el hombre no desciende del chimpancé (el término «mono» no es taxonómico y, en cualquier caso, nuestros antepasados son simios). Lo que sí está perfectamente documentado es que el hombre desciende de otras especies de homininos ya desaparecidos, y que éstos, a su vez, provienen de otros primates igualmente desaparecidos que dieron lugar a otras ramas evolutivas de las que descienden los chimpancés actuales. Tenemos que ser conscientes que también existen restos fósiles de los antepasados de chimpancés, gorilas, orangutanes etc.

 

Esta anotación participa en la XXIX Edición del Carnaval de Biología que organiza ::ZTFNews

 

Referencias

Devillers, C. y  Chaline, J. (1993), La teoría de la evolución. Madrid: Akal, 383 p.

Mayr, E. (1998), Así es la biología. Madrid: Debate, 326 p.

Ayala, F. J. (2001), La teoría de la evolución. Madrid: Temas de hoy, 215 p.

Arsuaga, J. L. (2001), El enigma de la esfinge. Barcelona: Círculo de Lectores, 470 p.

Gould, S. J. (2004), La estructura de la teoría de la evolución. Barcelona: Tusquets Editores, 1426 p.

(*) Arsuaga, J. L. (2012), El primer viaje de nuestra vida. Madrid: Temas de Hoy, 430 p.

Más información de interés

  • Anotación de César Tomé para el Cuaderno de Cultura Científica sobre la evolución.
  • El siguiente vídeo es, sencillamente, una genialidad:

 

Publicado por José Luis Moreno en ANTROPOLOGÍA, 4 comentarios
El 12º planeta — Introducción

El 12º planeta — Introducción

     Última actualizacón: 30 octubre 2017 a las 19:48

Vamos a analizar un libro ampliamente conocido, que pese a haber sido publicado originalmente hace más de 35 años, aún hoy en día se sigue editando (al menos en castellano hay nueve ediciones, la última de febrero de 2013). Me refiero al libro “El 12º Planeta” escrito por Zecharia Sitchin.

Debo reconocer que me sorprendió poder encontrar fácilmente un ejemplar sin necesidad de acudir a libreros de ocasión, ya que hay una gran cantidad de libros escritos en fechas muy posteriores que han desaparecido por completo. Esta circunstancia, unida al hecho de que se ha editado nueve veces en España en los últimos once años, demuestra a las claras que se trata de un texto que genera mucho interés entre el público.

El libro se anuncia como el primero de una serie titulada “Crónicas de la Tierra”, se divide en 15 capítulos y consta de 437 páginas en total.

En la solapa leemos, entre otros datos biográficos e información, que Zecharia Sitchin (1920-2010) se educó en Palestina (durante el mandato británico), se licenció en Historia económica en la London School of Economics and Political Science; y que adquirió un profundo conocimiento de numerosas lenguas, entre ellas el hebreo clásico, lenguas semíticas y el sumerio.

Nuestro autor posee una página web oficial y también hay otras páginas donde sus lectores se pueden comunicar y así mantener su interés en sus ideas.

Entrando a analizar el texto, en la contracubierta del libro leemos el siguiente resumen de los contenidos de la obra:

EDICIÓN ESPECIAL ILUSTRADA

CON NUMEROSOS MAPAS, DIAGRAMAS Y FOTOGRAFÍAS.

A partir de los textos antiguos, la arqueología y la mitología, Zecharia Sitchin entreteje el relato de los orígenes de la humanidad y documenta la intervención extraterrestre en la historia de la Tierra. Centrándose en la antigua Sumeria, el autor nos revela con extraordinaria precisión la historia completa del Sistema Solar según la versión de los visitantes procedentes de otro planeta que gira a corta distancia de la Tierra cada 3600 años. El 12º planeta es, sin duda, el libro de referencia obligada sobre los antiguos astronautas ya que en él se nos narra cuándo y cómo llegaron y de qué modo la tecnología y la cultura de estos astronautas influyen en la raza humana desde hace ya cientos de miles de años.

La finalidad de la obra queda clara desde el comienzo. El autor afirma en el prólogo que una civilización de otro planeta envió astronautas a la Tierra en algún momento de nuestro pasado, siendo su intención responder a las preguntas de ¿Cuándo lo hicieron? ¿Cómo llegaron aquí? ¿De dónde venían? ¿Y qué hicieron aquí durante su estancia?

Para lograr su propósito, utilizará «el Antiguo Testamento como ancla, y no presentando como evidencia otra cosa que los textos, los dibujos y los objetos que nos dejaron los antiguos pueblos de Oriente Próximo».  Sostiene que identificará el planeta del cual vinieron estos astronautas (llamado duodécimo planeta) exponiendo una nueva cosmología acerca de la formación de la Tierra y el Sistema Solar «que explica mejor que nuestras ciencias actuales»; y será capaz de describirlos físicamente así como su tecnología y el secreto de su «inmortalidad».

Este será el preámbulo para describir la «Creación» del hombre por estos astronautas así como los métodos que emplearon para lograrlo. En definitiva, su intención es mostrar que «el Hombre no está solo, y que las generaciones futuras tendrán otro encuentro con los súbditos del Reino de los Cielos».

De esta forma, si bien la tesis central es que nuestro planeta ha sido visitado por seres extraterrestres, la realidad es que sus planteamientos son más extensos:

  • Para él, el origen de la vida en la Tierra hay que buscarlo en otro lugar (lo que hoy en día conocemos como la teoría de la panspermia dirigida)
  • El hombre moderno, Homo sapiens, es un extraño en la Tierra. Pone en tela de juicio las afirmaciones de la paleoantropología “oficial” sosteniendo que la aparición de Homo sapiens fue súbita e inexplicable.  El desarrollo de sus herramientas, su capacidad de hablar, y otros rasgos modernos no tienen conexión con los primates anteriores, ni puede ser explicado con el lento proceso evolutivo (se apoya en una cita de Theodosius Dobzhansky ―Mankind evolving― quien concluye que «el hombre moderno tiene muchos parientes fósiles colaterales, pero no tiene progenitores; de este modo, la aparición del Homo sapiens se convierte en un enigma»). Su respuesta es que, como afirma el Antiguo Testamento y otras fuentes antiguas, fuimos creados por los dioses.
  • En relación con lo anterior, dado el escaso tiempo transcurrido desde su aparición, el hombre debería estar incivilizado: «al hombre le llevó dos millones de años avanzar en su “industria de la herramienta”, desde la utilización de las piedras tal cual las encontraba, […] y menos de 50.000 años después del Hombre de Neanderthal, hemos llevado astronautas a la luna».
  • Refiere que a pesar de que nuestros estudiosos no pueden explicar la aparición de Homo sapiens, al menos no hay duda “por ahora” de que la civilización surgió en Oriente Próximo.
  • Sitúa el origen de la agricultura en Oriente Próximo desde donde se extendió al resto del mundo.  El hombre comenzó cultivando y “domesticando” el trigo y la cebada, para luego aparecer en “rápida sucesión” el mijo, el centeno y la escanda; el lino que proporcionaba fibras y aceite comestible; y una amplia variedad de arbustos y árboles frutales: «era como si en Oriente Próximo hubiera existido una especie de laboratorio botánico genético, dirigido por una mano invisible, que producía de vez en cuando una planta domesticada» Siguiendo este argumento, identifica el “Edén” bíblico como este lugar, como el lugar del origen de la vid.
  • Tras la domesticación de plantas y animales, y el origen del culto a los muertos, que comienza en los alrededores del 11000 a.C., tuvo lugar la aparición de la cerámica en las tierras altas de Oriente Próximo en un lapso de no más de 3.600 años ―esta cifra temporal es importante como veremos más adelante― «el descubrimiento de los múltiples usos que se le podía dar a la arcilla tuvo lugar al mismo tiempo que el Hombre dejó sus moradas en las montañas para instalarse en los fangosos valles»
  • Tras esto, el progreso se ralentizó y se produjo una regresión hacia el 4500 a.C., aunque después, «súbita, inesperada e inexplicablemente, el Oriente Próximo presenció el florecimiento de la mayor civilización imaginable».

 

Esta imagen representa según el autor «la cabeza tallada de un «dios» cubierta por un casco rayado y portando una especie de «gafas»». Sin embargo, únicamente nos informa que fue hallada en el norte de Israel y datada en el noveno milenio a.C. No ofrece datos del yacimiento donde se descubrió ni dónde se encuentra el original con lo que se hace imposible corroborar su afirmación.

En resumidas cuentas, ni la vida ni el origen de Homo sapiens se explican sin la intervención de seres de otro planeta (nada afirma acerca del resto del mundo animal, de cómo surgen las diferentes especies o evolucionan). Todos los hitos culturales del ser humano, la fabricación de herramientas, la domesticación de plantas y animales, el origen de la cerámica etc. los achaca a estos seres sin quienes no habríamos sido capaces de evolucionar (al menos en el “corto” espacio de tiempo en que lo hemos hecho). En idénticos términos describe el origen de la civilización con la construcción de las primeras ciudades, la invención de la escritura  etc.

Bien, hasta aquí el planteamiento de su tesis. En próximas entradas iremos desgranando y discutiendo la veracidad de sus afirmaciones paso a paso, siguiendo el orden expositivo de su obra.

Publicado por José Luis Moreno en HETERODOXIA, 2 comentarios