bionica

Siete días … 7 a 13 de noviembre (lesiones medulares)

Siete días … 7 a 13 de noviembre (lesiones medulares)

     Última actualizacón: 8 octubre 2019 a las 12:13

sietediascalendario

ÚLTIMAS ANOTACIONES

— Comportamiento animal: uso de herramientas en primates.

NOTICIAS CIENTÍFICAS

macaco_con_implante

Monos paralizados por una lesión medular vuelven a andar

Un equipo científico suizo ha logrado que dos macacos recuperen el control de una pierna paralizada a los seis días de haber sufrido una lesión medular parcial, gracias a una interfaz inalámbrica que restablece la comunicación entre el cerebro y la región dañada de la médula.

El dispositivo decodifica las órdenes cerebrales necesarias para caminar y transmite esta información a la médula espinal a través de electrodos. De esta manera, con una estimulación eléctrica de pocos voltios aplicada en lugares precisos de la médula espinal, se modulan las redes neuronales encargadas de activar los músculos de las piernas durante la locomoción.

Una parte de su dispositivo inalámbrico ha comenzado a probarse en un estudio de viabilidad en humanos con lesión parcial de la médula espinal.

Referencia: Capogrosso, M., et al. (2016), «A brain–spine interface alleviating gait deficits after spinal cord injury in primates«. Nature, vol. 539, núm. 7628, p. 284-288.

Noticia en  Materia – El País.

LIBRO DE LA SEMANA

portadaevolucionhumanhead

FICHA COMPLETA

Publicado por José Luis Moreno en SIETE DÍAS, 0 comentarios
Siete días … 14 a 20 de octubre (Dmanisi)

Siete días … 14 a 20 de octubre (Dmanisi)

     Última actualizacón: 27 octubre 2017 a las 13:47

EVOLUCIÓN HUMANA

Tienen 1,8 millones de antigüedad y constituyen los restos de homínidos más antiguos encontrados fuera de África. Se trata de un cráneo y una mandíbula en excelente estado de conservación que han sido desenterrados en el rico yacimiento de de Dmanisi, en Georgia. Un espectacular hallazgo que se realizó en 2000 (la mandíbula) y en 2005 (el cráneo) y del que ahora se publican todos los detalles en la revista ‘Science‘. Se trata del quinto cráneo que se encuentra en Dmanisi.

El descubrimiento de este fósil (denominado D4500 o cráneo 5) ha reabierto el viejo debate sobre la clasificación de especies del género Homo, al que pertenecemos.

Hasta ahora, los restos de homínidos más antiguos fuera de África se hallaron en Indonesia (de 1,7 millones de antigüedad), mientras que en Europa los restos más tempranos de homínidos están en la Sima del Elefante de Atapuerca y tienen 1,3 millones de años.

Los científicos de esta investigación subrayan que este individuo al que pertenece el cráneo 5 comparte características morfológicas con los primeros fósiles del género Homo encontrados en África, y que tienen una antigüedad de 2,4 millones de años.

El individuo tenía un cerebro pequeño (546 centímetros cúbicos), con un tamaño equivalente a menos de la mitad del que tenemos los ‘Homo sapiens’ (que ronda los 1.400). Su cara era alargada y los dientes grandes. Según los cálculos de los científicos, era un varón que medía entre 1,40 y 1,60 metros y pesaba alrededor de 50 kilogramos. Cuando murió debía tener unos 30 años.

Los paleontólogos que firman este estudio realizan una provocadora propuesta: que los fósiles tempranos del género Homo (aquellos que tradicionalmente han sido clasificados como ‘Homo habilis’, ‘Homo rudolfensis’ o ‘Homo erectus’) pasen a ser considerados miembros de una única especie. Aunque admiten que tienen características físicas diversas, creen que la variación no es tan pronunciada como para considerar que pertenecen a líneas evolutivas distintas.

Es decir, propondrían englobar bajo la definición de ‘Homo erectus’ los restos fósiles descubiertos en África hace 2,4 millones de años así como los desenterrados posteriormente en Asia y Europa hace entre 1,7 y 1,2 millones de años.

«Es una osadía muy grande»

La pequeña «bomba» en el campo de la paleontología que supone borrar de un plumazo las primeras especies del género Homo para convertirlas en una sola no se ha quedado, como era de esperar, sin detractores. Consultados por Ann Gibbons para una artículo adjunto a la investigación en la revista «Science», el paleoantropólogo Ron Clarke, de la Universidad de Witwatersrand en Johannesburgo cree que el Cráneo 5 se asemeja más a un Homo habilis, mientras que Fred Spoor, del Max Planck, argumenta que sería más «sensato» denominarlo erectus.

José María Bermúdez de Castro, codirector del yacimiento burgalés de Atapuerca, conoce bien los restos del yacimiento Dmanisi, que ha estudiado in situ, y se muestra muy escéptico con las conclusiones del nuevo estudio. «Tengo serias dudas al respecto. Es una osadía muy grande extenderlas a todo el continente africano y decir que solo existe un linaje Homo», explica por teléfono a ABC. El científico ha examinado las mandíbulas de ese yacimiento «extraordinario» y cree que existen «grandes diferencias» entre la del Cráneo 5 y las demás.

Bermúdez de Castro tampoco considera concluyente que todos los individuos pertenecieran a la misma época, ya que «los geólogos no acaban de ponerse de acuerdo sobre la antigüedad de los estratos». En caso de que efectivamente fueran coetáneos, «podrían haber convivido dos especies o subespecies sin problemas» si cada una de ellas tenía su propio nicho ecológico, es decir, no se molestaban entre ellas a la hora de buscarse la vida. «Muchos colegas no estarán felices con estas conclusiones y se escribirán artículos no favorables», predice. Eso sí, el descubrimiento «no afecta en absoluto a Atapuerca, hay 600.000 años de diferencia». Con todo, «el debate está servido».

• Noticia El Mundo

• Noticia ABC

• Artículo: A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo

BIOLOGÍA

Investigadores de la Universidad de Lund (Suecia) han realizado un experimento para comprobar si los chimpancés tienen la capacidad de bostezar o sonarse la nariz repitiendo los gestos humanos. Para ello, los científicos examinaron dos factores para ver en qué medida les afecta: su edad y su cercanía emocional a la persona. En el ensayo incluyeron a 33 chimpancés huérfanos, 12 crías de uno a cuatro años de edad y 21 de entre cinco y ocho años.

Cada chimpancé observaba por separado a una persona desconocida y a otra conocida. Además, se les realizaron distintas sesiones de ensayos con humanos bostezando o sonándose la nariz. El bostezo humano provocó 24 bostezos de los chimpancés jóvenes y cero de las crías: “Los bostezos fueron contagiosos para los chimpancés de cinco a ocho años, pero el acto de sonarse la nariz no. En contraste, las crías de uno a cuatro años no encuentran contagioso ni el bostezo ni sonarse la nariz”, señala el trabajo. La cercanía emocional con el ser humano que bostezaba no afectó en su repetición.

«Nuestros resultados reflejan un patrón de desarrollo compartido por seres humanos y otros animales. Dado que el bostezo contagioso puede ser una respuesta empática, también podemos concluir que la empatía se desarrolla lentamente durante los primeros años de vida de los chimpancés», argumenta Elainie Madsen, coautora del estudio en la Universidad de Lund.

• Noticia Agencia SINC

• Artículo: Chimpanzees show a developmental increase in susceptibility to contagious yawning: a test of the effect of ontogeny and emotional closeness on yawn contagion (descarga directa en formato PDF)

ECOLOGÍA

Cuanto mejor le va a los humanos, peor lo tiene la naturaleza. Un estudio relaciona la esperanza de vida humana con la extinción de especies. Los países más desarrollados son también los que tienen un mayor número de especies invasoras.

La extinción del tigre de Tasmania, el confinamiento de los últimos bisontes americanos en reservas o las dificultades para sacar adelante al lince ibérico son manifestaciones del impacto del ser humano sobre la naturaleza. Pero ¿cuáles son los factores que convierten a un depredador en exterminador? Biólogos estadounidenses acaban de mostrar que existe una correlación entre el desarrollo humano y el incremento de la ratio de las extinciones de mamíferos y aves.

Con datos de 100 países donde vive el 87% de la población, y ocupan el 74% de la tierra del planeta, investigadores de la Universidad de California en Davis analizaron el papel de 15 variables sociales y ecológicas para desentrañar las complejas relaciones entre sociedades humanas y naturaleza. Buscaban los factores que predicen mejor la extinción de unas especies o la invasión de otras en ecosistemas que no eran los suyos en origen.

Sus resultados muestran un doble patrón que se repite en casi todos los países: las naciones más desarrolladas son las que sufren la mayor presencia de especies invasoras. A medida que aumenta el PIB per cápita, se eleva la presencia de aves y mamíferos ajenos. La lista la encabezan Nueva Zelanda, Estados Unidos y el Reino Unido.

• Noticia Es Materia

• Artículo: Social-ecological predictors of global invasions and extinctions (descarga directa en formato PDF)

EVOLUCIÓN HUMANA

Los denisovanos, unos misteriosos ancestros humanos de Siberia, atravesaron la Línea de Wallace, una de las barreras marinas más importantes del mundo, en Indonesia, para hibridarse con el Homo sapiens.

En marzo de 2010, el mundo conoció un extraño fósil, un fragmento de un meñique infantil de unos 50.000 años de antigüedad, descubierto en la cueva siberiana de Denisova, en los montes Altai. Dos años después, científicos del Instituto Max Planck de Antropología Evolutiva llevaron a cabo la secuenciación del genoma de esos restos y llegaron a la conclusión de que se trataba de una especie completamente nueva, «hermana» de los neandertales: los denisovanos. Ahora, investigadores de la Universidad de Adelaide, en Australia, sugieren que estos ancestros lograron de alguna manera atravesar una de las barreras marinas más importantes del mundo, en Indonesia, y más tarde se cruzaron con los humanos modernos que se movían por la zona de camino a Australia y Nueva Guinea. En concreto, varones de esa especie tuvieron sexo con mujeres de la nuestra.

Desde que los investigadores obtuvieran el análisis genético de los denisovanos, se ha detectado evidencia genética que apunta a su hibridación con poblaciones humanas modernas, pero solo con poblaciones indígenas de Australia, Nueva Guinea y áreas circundantes. Por el contrario, el ADN del homínido de Denisova parece estar ausente o en niveles muy bajos en las poblaciones actuales en el continente asiático, a pesar de que éste es el lugar donde se encontró el fósil.

Los autores del estudio, publicado este jueves en la revista Science, Alan Cooper, profesor de la Universidad de Adelaida, y Chris Stringer, profesor del Museo de Historia Natural de Reino Unido, creen que este patrón se puede explicar si los denisovanos lograron cruzar la famosa línea de Wallace, una de las mayores barreras biogeográficas del mundo que está formada por una poderosa corriente a lo largo de la costa este de Borneo. La línea de Wallace marca la división entre los mamíferos de Europa y Asia.

• Noticia ABC

• Artículo: Did the Denisovans cross Wallace’s Line?

GENÉTICA

Científicos estadounidenses han utilizado células madre de la piel de personas con esclerosis lateral amiotrófica para averiguar el mecanismo genético por el cual se van matando células cerebrales. Así, averiguaron que la mutación de un gen provoca la producción excesiva de ARN, que impide la correcta fabricación de las proteínas que regulan las funciones vitales de la célula, que se vuelve más sensible al estrés, y muere más rápido. Los investigadores diseñaron un compuesto que se adhiere al ADN mutado e impide la producción excesiva de ARN.

Según anteriores trabajos, alrededor del 40% de los pacientes con una variedad heredada de este tipo de esclerosis y al menos el 10% de los que la desarrollan espontáneamente tienen una mutación en el gen C9ORF72, la misma que aparece frecuentemente en personas con demencia frontotemporal, la segunda forma más común de esta enfermedad después del alzheimer.

Los científicos seleccionaron dentro de un banco de células madre las de los pacientes con el trastorno degenerativo que además poseían esta alteración responsable de la repetición anómala de una secuencia de ADN contenida en dicho gen y, en consecuencia, de la producción de un exceso de ARN.

A continuación, los investigadores analizaron la evolución de los cultivos para identificar el mecanismo por el cual estas cadenas sobrantes provocan la muerte de las células cerebrales. “Hay múltiples teorías acerca de por qué se produce el daño neuronal”, señala Rothstein. “Nuestro ensayo demuestra que la verdadera causa es la toxicidad causada por el ARN”, indica.

Los resultados del estudio revelan que la acumulación de estas moléculas impide la correcta fabricación de las proteínas encargadas de la regulación de las funciones vitales de la célula y la vuelve más sensible al estrés.

• Noticia Tendencias21

• Artículo: RNA Toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention

NEUROCIENCIA

Hace ya unos años, Francisco Rubia impartió una conferencia sobre «Recientes avances en las funciones mentales del cerebro» en la que hablaba de revolución científica en las neurociencias. La conferencia se basa en cuatro grandes temas: realidad exterior, el yo, la libertad y la espiritualidad. La realidad está en nuestro cerebro, las impresiones subjetivas son proyecciones de nuestro cerebro. El yo en otras culturas no es tan egocéntrico, como las orientales. El libre albedrío ha sido estudiado por numerosos neurólogos al igual que las experiencias místicas y espirituales.

La conferencia se desarrolló en el ciclo Maratones científicos 2005-2006, Museo Nacional de Ciencia y Tecnología, y ahora podemos acceder a su contenido, que reproducimos por su indudable interés.

Francisco J. Rubia Vila es Catedrático de la Facultad de Medicina de la Universidad Complutense de Madrid, y también lo fue de la Universidad Ludwig Maximillian de Munich, así como Consejero Científico de dicha Universidad. Estudió Medicina en las Universidades Complutense y Düsseldorf de Alemania. Ha sido Subdirector del Hospital Ramón y Cajal y Director de su Departamento de Investigación, Vicerrector de Investigación de la Universidad Complutense de Madrid y Director General de Investigación de la Comunidad de Madrid. Durante varios años fue miembro del Comité Ejecutivo del European Medical Research Council. Su especialidad es la Fisiología del Sistema Nervioso, campo en el que ha trabajado durante más de 40 años, y en el que tiene más de doscientas publicaciones. Es Director del Instituto Pluridisciplinar de la Universidad Complutense de Madrid. Es miembro numerario de la Real Academia Nacional de Medicina (sillón nº 2), Vicepresidente de la Academia Europea de Ciencias y Artes con Sede en Salzburgo, así como de su Delegación Española. Ha participado en numerosas ponencias y comunicaciones científicas, y es autor de los libros: “Manual de Neurociencia”, “El Cerebro nos Engaña”, “Percepción Social de la Ciencia”, “La Conexión Divina”, “¿Qué sabes de tu cerebro? 60 respuestas a 60 preguntas” y “El sexo del cerebro. La diferencia fundamental entre hombres y mujeres”.

___

Una investigación de la Universidad de Chicago podría haber sentado las bases para el diseño de futuras prótesis sensibles al tacto capaces de transmitir la información sensorial en tiempo real a personas que han sufrido una amputación a través de una interfaz conectada directamente con el cerebro. Las nuevas prótesis ‘sensoriales’ aumentarían la destreza y la viabilidad clínica de las prótesis robóticas actuales.

El estudio presenta una hoja de ruta para utilizar la estimulación eléctrica con el fin de restaurar el sentido del tacto a través de prótesis. De momento, el equipo de Sliman Bensmaia, de la Universidad de Chicago, ya ha probado la técnica en animales -monos rhesus- y ha visto que es capaz de transmitir información «crítica» para la manipulación de objetos gracias a la estimulación directa de la corteza somatosensorial primaria del cerebro, área en donde se procesan las sensaciones táctiles.

«Para restaurar la función motora sensorial de un brazo, no sólo se tienen que sustituir las señales motoras que el cerebro envía al miembro para moverlo, sino también hay que sustituir las señales sensoriales que el brazo envía de vuelta al cerebro», explica Bensmaia. Su aproximación se basa en «invocar» lo que ya sabemos sobre cómo el cerebro intacto procesa la información sensorial y, a continuación, «intentar reproducir dichos patrones de actividad neuronal a través de la estimulación del cerebro».

• Noticia El Correo

• Artículo: Restoring the sense of touch with a prosthetic hand through a brain interface

PALEONTOLOGÍA

Descubren el fósil de un mosquito repleto de sangre de hace 46 millones de años. Desde la aparición en los cines de «Parque Jurásico», muchos han fantaseado con las posibilidades de clonar diferentes especies de dinosaurios a partir de la sangre encontrada en antiguos mosquitos atrapados en ámbar. Algunos científicos afirmaron haber encontrado insectos fosilizados con su última cena en su abdomen, pero estos descubrimientos resultaron ser erróneos o estar contaminados. Hasta ahora, porque un grupo de investigadores del Museo Smithsonian de Historia Natural (Washington), ha encontrado por fin un mosquito repleto de sangre preservada en una roca de pizarra de 46 millones de años en el noroeste de Montana.

Según los investigadores, estos resultados sirven como evidencia definitiva de que la sangre se conservó en el interior del insecto. Pero, ¿a quién pertenecía esa sangre? Por el momento, los científicos no tienen forma de saber cuál era la criatura cuya sangre llenó el abdomen del mosquito. Eso es porque el ADN se degrada demasiado rápido para sobrevivir posiblemente 46 millones de años atrapado en piedra (o en ámbar). Una reciente investigación indica que tiene una vida media de aproximadamente 521 años, incluso bajo condiciones ideales.

• Noticia ABC

• Artículo: Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito

ARQUEOLOGÍA

En Suiza, en la autopista A1, a la altura de Vidy, cerca de Lausana, se ha abierto una zanja bajo el asfalto. Los arqueólogos realizan excavaciones en unas antiguas ruinas galloromanas.

Olivier Feihl realiza una cartografía en 3D del sitio arqueológico utilizando una cámara instalada en un vehículo aéreo no tripulado: “Disparo una fotografía cada dos metros o dos metros y medio, para cubrir totalmente el terreno. Es decir, que con las fotografías superpuestas vamos a poder medir esta excavación en 3D.”

Una pequeña revolución para los arqueólogos y sobre todo una forma de ganar tiempo. Desde días a semanas en función del tamaño del yacimiento según explica Sébastien Freudiger, de la empresa suiza Archeodunum: “Antes de que llegara este tipo de tecnología se hacía todo a mano, es decir que cada muro y cada estrato se dibujaban a mano. Ahora, con esta tecnología podemos tener un soporte con un tratamiento informático.”

Tras 10 minutos de vuelo, ya están hechas las fotos y solo queda tratarlas en el ordenador y transformarlas en imágenes tridimensionales de alta resolución.

“Hemos integrado todas esas fotos en un programa de fotogrametría. Con ese programa vamos a poder unir todas esas fotos. Aquí vemos todas las posiciones. Cada pequeño rectángulo azul corresponde a la posición de una fotografía tomada en el sitio. Después, con el GPS vamos a poder dar una escala métrica y una referencia de horizonte a este modelo en 3D.”

Un excelente instrumento no solo para los arqueólogos, pues las imágenes también podrían estar a disposición del gran público.

• Vídeo:

Publicado por José Luis Moreno en SIETE DÍAS, 0 comentarios
Andar con la mente

Andar con la mente

     Última actualizacón: 2 abril 2018 a las 17:54

Hace poco comentábamos los avances en el tratamiento de diferentes problemas de visión relacionados con algunas enfermedades oculares y los mecanismos empleados: la terapia génica y la biónica.  Ahora vamos a profundizar más en el segundo de estos mecanismos y el trabajo que están realizando numerosos científicos para conseguir otro hito importante: conseguir que personas con parálisis vuelvan a caminar.

El término biónica proviene de la raíz bio- «vida» y de la terminación de electró-nica,y es definida por la Real Academia Española de la Lengua como la aplicación del estudio de los fenómenos biológicos a la técnica de los sistemas electrónicos.  En otros términos, en el campo de la medicina, biónica significa la sustitución de órganos o miembros por versiones mecánicas.

brazo-bionico

Existen distintos tipos de prótesis en función del órgano o miembro afectado.  Por ejemplo, desde hace más de 50 años se vienen realizando implantes cocleares: consiste en la implantación quirúrgica de un aparato que transforma las señales acústicas en señales eléctricas que estimulan el nervio auditivo.  Estas señales eléctricas son procesadas a través de las diferentes partes de que consta el implante y que son tanto externas (colocadas fuera del cráneo y que comprenden un micrófono, un procesador y un transmisor) como internas (un receptor-estimulador y unos electrodos).

Del mismo modo, se emplean prótesis de brazos y piernas que reciben el nombre de prótesis neurales o biónicas (ahora que los científicos han acabado por aceptar el término popularizado por los escritores de ciencia ficción).  El mecanismo es relativamente sencillo sobre el papel: los miembros artificiales se acoplan al cuerpo mediante diferentes sistemas de sujeción y emplean los nervios que quedan tras una amputación para comunicarse con el cerebro de forma que éste puede controlarlos.

Los nervios, como parte del sistema nervioso periférico, conducen los impulsos eléctricos que conforman los estímulos desde los diferentes órganos al cerebro a través de la médula espinal.  Cuando alguien sufre la amputación de una pierna pero los nervios siguen intactos, es posible su reconexión mediante una técnica denominada “reinervación muscular dirigida” (targeted muscle reinnervation o TMR por sus siglas en inglés).  La técnica, desarrollada por el Dr. Todd  Kuiken, director del centro de medicina biónica del Instituto de Rehabilitación de Chicago, transfiere los nervios de la pierna o el brazo a los músculos adyacentes.  Cuando los nervios crecen en el músculo, éstos “piensan” como los músculos del pie o de la mano.  De esta forma, cuando el usuario de una prótesis piensa en contraer la mano, las contracciones del músculo son medidas por señales mioeléctricas que permiten que la mano protésica responda.  Es cierto que se necesita un intenso entrenamiento físico y mental para desarrollar todo el potencial, pero la mejora de estos sistemas con relación a las prótesis anteriores es abismal.

El poder de la mente

¿Y si fuéramos capaces de ir más allá?  Imaginemos una persona postrada en una cama debido a una tetraplejia (personalmente, me es difícil imaginar una situación más dura).  Acto seguido, imaginemos que esa misma persona se encuentra de pie frente a decenas de miles de espectadores y se encarga de hacer el saque de honor en el partido inaugural de la Copa Mundial de Fútbol a celebrar en Brasil el año que viene.  ¿Ciencia-ficción?

No.  Esta es la meta que se ha propuesto un grupo interdisciplinar de científicos encabezados por el brasileño Miguel Angelo Laporta Nicolelis que ha sido precursor, junto a sus colegas de la Universidad de Duke (en Durham, Carolina del Norte), de una técnica que permite implantar, por ahora en cerebros de ratas y monos, centenares de hilos conductores, finos como cabellos, formando microsondas.  Éstas pueden detectar señales eléctricas muy débiles (potenciales de acción), generadas por unos pocos cientos de neuronas que se encuentran repartidas por la corteza frontal y parietal de los animales en experimentación y que son responsables de la generación de movimientos voluntarios.

Para hacer realidad la hazaña sin precedentes de que una persona vuelva a andar, el paciente llevará un traje robótico ―un exoesqueleto― confeccionado a su medida.  Las señales motoras generadas por su cerebro serán enviadas a una mochila donde habrá un ordenador.  Este será el encargado de “traducir” las señales eléctricas cerebrales en órdenes concretas para los motores del exoesqueleto, a fin de que este, ante todo, estabilice el peso del paciente y, después, coordine sus movimientos en el campo hasta llegar y golpear el balón.

Un prototipo de este exoesqueleto se está construyendo ya en el laboratorio de Gordon Cheng de la Universidad Técnica de Múnich y fundador de Walk Again (camina de nuevo), un proyecto internacional sin ánimo de lucro cuyo principal objetivo es desarrollar y poner en práctica el primer interfaz cerebro-máquina (brain-machine interface) capaz de restablecer la plena movilidad de los pacientes afectados de un grado severo de parálisis.  Sus investigaciones han hecho posible que primates no humanos puedan utilizar la actividad eléctrica producida por cientos de neuronas, localizadas en varias regiones de su cerebro, para controlar directamente los movimientos de una gran variedad de dispositivos robóticos, incluyendo prótesis de brazos y de piernas.

Procedimiento complejo

Para que una persona sea capaz de mover con su mente un miembro robótico, es necesario en primer lugar establecer una comunicación directa con las neuronas encargadas de transmitir esa orden.  No solo será preciso ubicar electrodos o sensores en el interior de la caja craneana, sino que habrá que “leer” simultáneamente una gran cantidad de neuronas.  Muchos de estos sensores serán implantados en la corteza motora, la región del lóbulo frontal asociada con la generación de movimientos voluntarios, cuyas neuronas controlan y coordinan directamente el trabajo de nuestros músculos.

Acto seguido y una vez traducidos dichos impulsos eléctricos, habrán de ser retransmitidos al exoesqueleto para que se activen los diferentes actuadores y componentes mecánicos.  Por último, y no menos importante, es preciso que exista un bucle, una retroalimentación con información del tacto, la fuerza, equilibrio etc. para que el cerebro del paciente sea capaz de adaptarse y modificar continuamente los impulsos que debe emitir.

the-science-of-neural-interface-systems-imagen2

Gary Lehew, colaborador de Nicoelis en la Universidad de Duke, ha ideado un nuevo tipo de sensor: un cubo de registro (debidamente patentado en Estados Unidos) que, una vez implantado, puede reconocer señales de un volumen tridimensional de la corteza.  A diferencia de los anteriores sensores compuestos por matrices planas de microelectrodos, cuyas puntas reciben las señales eléctricas neuronales, este dispositivo extiende microfilamentos hacia arriba, hacia abajo y hacia los lados, recogiendo información por tanto de forma tridimensional.  Esto significa que cada cubo podría, en principio, captar la actividad eléctrica de entre 4.000 y 6.000 neuronas.  El objetivo consiste en implantar varios de estos sensores para disponer de datos simultáneos de decenas de miles de neuronas.

Para poder manejar la abundante cantidad de datos que genera este dispositivo, los investigadores avanzan en el diseño de microcircuitos que, implantados junto a los microelectrodos, envíen la información al exoesqueleto.  Para este cometido, Tim Hanson ha construido un sistema de registro inalámbrico que permite enviar las ondas cerebrales hasta un receptor remoto.  De esta forma, los datos procedentes de los sistemas de registro se transmitirán inalámbricamente a un ordenador alojado en una mochila, donde varios procesadores digitales ejecutarán unos algoritmos que traducirán las señales neuronales en órdenes aptas para controlar los elementos móviles, o actuadores, repartidos por las articulaciones del exoesqueleto y que ajustarán la posición de las extremidades artificiales.

Por último, como ya hemos avanzado, el paciente no solo ha de moverse, sino también sentir el suelo que pisa o la fuerza que ejerce con las manos.  El exoesqueleto reproducirá un sentido del tacto y equilibro incorporando sensores microscópicos que, por una parte, detecten la cantidad de fuerza de cada movimiento concreto y, por otra, envíen la información del traje al cerebro para su procesamiento.

El equipo de Nicoelis ha logrado ya un avance decisivo en este campo al lograr que dos monos aprendan a ejercer un control neuronal de los movimientos de un brazo creado por ordenador, que no solo toca objetos del mundo virtual, sino que suministra también una realimentación “táctil artificial” directamente al cerebro de cada simio.  Mediante entrenamiento, esta estimulación reactiva del cerebro gracias a los sensores instalados en el exoesqueleto deberían posibilitar una caminata sin tropiezos bastante similar a la que podemos hacer cualquiera de nosotros todos los días.

Otras aplicaciones

Una vez que se controle a la perfección el proceso de envío de las señales cerebrales a un dispositivo para su tratamiento digital y su conversión en órdenes mecánicas, el abanico de posibilidades de esta tecnología se abrirá en todo su esplendor.  Ya no solo será posible que un humano con una lesión severa pueda volver a caminar y realizar una tarea tan cotidiana como vestirse, sino que permitirá la manipulación de robots enviados a ambientes donde un humano jamás podría o debería penetrar directamente: sería posible dirigir la actividad de un operario humanoide para reparar los daños sufridos tras un accidente nuclear como el que tuvo lugar en Fukushima.

Más aún, podríamos controlar herramientas que ejerzan fuerzas mucho mayores, o mucho más livianas, de lo que nuestros cuerpos son capaces, liberando así de las limitaciones ordinarias la cantidad de fuerza que un individuo puede desarrollar.

Quizás algún día se haga realidad la visión que James Cameron plasmó en su película Avatar y podamos maniobrar a distancia robots de cualquier tamaño y, tal vez, enviarlos a otros cuerpos celestes para que realicen los trabajos que nosotros no podemos o queremos llevar a cabo.

 

Referencias

Kuiken, T. A., Dumanian, G. A., Lipschutz, R. D., Miller, L. A., & Stubblefield, K. A. (2004). The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee Prosthetics and Orthotics International, 28 (3), 245-253 : 10.3109/03093640409167756

En este artículo se describe el novedoso método para controlar una prótesis mioeléctrica de las extremidades superiores que se logró en un paciente con amputaciones bilaterales a nivel de los hombros.  Se empleó la técnica de “reinervación muscular dirigida» gracias a la cual el paciente podía controlar simultáneamente dos movimientos con la prótesis experimental, tanto del codo como  de la muñeca.  El paciente manifestó que prefería claramente la nueva prótesis al indicar que era más fácil y rápida de utilizar, y la consideraba más natural.

O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, & Nicolelis MA (2011). Active tactile exploration using a brain-machine-brain interface. Nature, 479 (7372), 228-31 PMID: 21976021

En este artículo se demuestra el funcionamiento de una interfaz cerebro-máquina-cerebro (BMBI por sus siglas en inglés) que controla tanto los movimientos exploratorios de un actuador como permite la realimentación táctil artificial mediante la microestimulatión intracortical de la corteza somatosensorial primaria.

Lebedev MA, & Nicolelis MA (2006). Brain-machine interfaces: past, present and future. Trends in neurosciences, 29 (9), 536-46 PMID: 16859758

Velliste, M., Perel, S., Spalding, M., Whitford, A., & Schwartz, A. (2008). Cortical control of a prosthetic arm for self-feeding Nature, 453 (7198), 1098-1101 DOI: 10.1038/nature06996

Matsuoka Y, Afshar P, & Oh M (2006). On the design of robotic hands for brain-machine interface. Neurosurgical focus, 20 (5) PMID: 16711660

Hatsopoulos, N., & Donoghue, J. (2009). The Science of Neural Interface Systems Annual Review of Neuroscience, 32 (1), 249-266 DOI: 10.1146/annurev.neuro.051508.135241

Publicado por José Luis Moreno en CIENCIA, 5 comentarios
Devolver la vista a un ciego

Devolver la vista a un ciego

     Última actualizacón: 2 abril 2018 a las 17:50

La terapia génica –la técnica que consiste en la introducción de genes ausentes o disfuncionales en un organismo vivo para restaurar su función original– está comenzando a dar frutos en un área que va a tener un amplio recorrido: la restauración de la visión en pacientes que la han venido perdiendo desde que nacieron debido a diversas enfermedades.

Jean Bennett

Jean Bennett y Albert Maguire

Jean Bennett, neuróloga de la Universidad de Pensilvania, estudia la genética molecular de las degeneraciones hereditarias de retina con la idea de utilizar sus conocimientos para el tratamiento de estas enfermedades. Entre las enfermedades que investiga se incluyen la retinitis pigmentaria (enfermedad genética que es la forma hereditaria más común de ceguera) y la degeneración macular relacionada con la edad. Los estudios que lleva a cabo en su laboratorio van desde la identificación de las bases moleculares de la degeneración de la retina, la evaluación de nuevos vectores para la transferencia de genes a la retina, y la caracterización de las respuestas inmunitarias a la transferencia de genes.

Anatomía del ojo y la retina

Anatomía del ojo y la retina

Entre los años 2008 y 2011, ha venido utilizando la terapia génica para tratar la ceguera en doce adultos y niños con amaurosis congénita de Leber (ACL). Se trata de una enfermedad ocular muy infrecuente que destruye la visión al dañar los fotorreceptores, las células de la retina que son sensibles a la luz. Los niños afectados suelen presentar problemas de visión desde el nacimiento, que se van agudizando a medida que van perdiendo más y más fotorreceptores, hasta quedar completamente ciegos. Se trata quizás de la peor de este tipo de enfermedades puesto que, conforme vas creciendo, vas siendo consciente de que perderás la vista y la posibilidad de relacionarte con normalidad con el mundo que te rodea. Es una enfermedad progresiva que a menudo conlleva problemas psicológicos muy importantes.

Pues bien, el tratamiento que empleó la Dra. Bennett se basó en el hecho de que la enfermedad avanza debido a una serie de mutaciones genéticas en las células de la retina. Una de estas mutaciones impide la producción de una enzima que transforma el retinol ―o vitamina A― en la rodopsina, la sustancia que necesitan los fotorreceptores para detectar la luz y enviar señales al cerebro.

En un primer estudio, Bennet y sus colaboradores inyectaron una serie de genes funcionales directamente en la retina, que habían sido previamente “programados” para suplir los genes defectuosos. El objetivo consistía en tratar uno de los ojos de los doce participantes en el experimento, y los resultados no pudieron ser más sorprendentes: seis de los participantes mejoraron tanto en su visión que dejaron de cumplir los criterios legales de ceguera. En un trabajo posterior continuación del primero, que ha sido publicado este año en la revista Science Translational Medicine 1, volvieron a trabajar con los mismos pacientes que en el anterior. Tres de las mujeres recibieron el tratamiento en el ojo que no había sido tratado en el estudio previo, y se les realizó un seguimiento durante seis meses. Su visión en ese ojo mejoró en solo dos semanas desde la operación: podían evitar obstáculos con luz tenue, leer textos escritos con letra grande y reconocer rostros. Otro descubrimiento importante fue que los ojos de esas pacientes no solo se habían vuelto más sensibles a la luz, sino que sus cerebros también respondían mejor a los estímulos ópticos.

Es decir, la segunda fase de la terapia génica reforzó la respuesta del cerebro a los estímulos provenientes de los dos ojos, es decir, tanto al tratado al principio, como el que recibió tratamiento un año después. Se especula que este resultado tiene que ver con la binocularidad: dado que nuestros dos ojos actúan de forma coordinada, la mejoría en uno de ellos favorece la visión con el otro o, dicho de otra forma, mejora la forma en que el cerebro responde al estímulo de ese otro ojo.

Además de las terapias génicas, se están realizando avances importantes en otro campo relacionado y que ilustra a la perfección que la ciencia emplea varios caminos para llegar al mismo lugar y alcanzar el mismo objetivo.  Si los trabajos de Bennett buscan encontrar la base genética de las diferentes enfermedades para tratar de ponerles remedio, otro campo de investigación intenta suplir el funcionamiento biológico de los ojos a través de implantes electrónicos (lo que ha venido en llamarse biónica).

El caso más sobresaliente es el de Miika Terho, una persona totalmente ciega que durante tres meses, en el año 2008, recuperó la capacidad de diferenciar con la vista una manzana de un plátano gracias a un pequeño chip que se le implantó en el ojo izquierdo.

Aunque breve, el éxito inicial de la nueva técnica ha cambiado para siempre las perspectivas de Terho y de muchos otros como él, que sufren retinitis pigmentaria, la enfermedad genética que destruye los fotorreceptores, las células fotosensibles que revisten la retina en la parte posterior del ojo.  Terho presentó una visión normal hasta los 16 años, pero a partir de entonces su visión nocturna comenzó a fallar.  A los 20 años su capacidad de ver durante el día también se deterioró.  A los 35 había perdido la visión central de ambos ojos y finalmente, a los 40 años de edad, únicamente percibía indicios de luz en la periferia de su campo de visión.

Eberhart Zrenner

Eberhart Zrenner

Sin embargo, todo cambió en noviembre de 2008 cuando Eberhart Zrenner, de la Universidad de Tübingen, integró en su retina un chip que reemplazó a los fotorreceptores (los conos y bastones) dañados.  Como hemos dicho, en una retina sana los fotorreceptores transforman la luz en impulsos eléctricos que finalmente llegan al cerebro después de atravesar varias capas de tejido especializado, uno de ellos compuesto por las células bipolares.

Cada una de las 1500 celdas del chip implantado, dispuestas en una cuadrícula de unos 3 milímetros cuadrados, contiene un fotodiodo, un amplificador y un electrodo.  Cuando la luz incide sobre uno de los fotodiodos, genera una pequeña corriente eléctrica que se refuerza por el amplificador adyacente y se canaliza al electrodo, que a su vez estimula la célula bipolar más cercana.  Esta envía en última instancia una señal al cerebro a través del nervio óptico.  Cuanta más luz incide sobre un fotodiodo, mayor es la corriente eléctrica resultante.

Gracias a este implante, Terho pudo distinguir la formas básicas y los contornos de personas y objetos, aunque no contenía electrodos suficientes como para producir imágenes nítidas ni tampoco el color.  Otro inconveniente es que hubo que retirar el chip después de tres meses porque el diseño hacía a los pacientes vulnerables a las infecciones cutáneas (no olvidemos que la implantación del chip obliga a mantener una herida abierta permanentemente).  Además, los usuarios necesitaban estar cerca de un ordenador que controlara de forma inalámbrica la frecuencia de los impulsos eléctricos, así como aspectos de la visión tales como el brillo y el contraste.

Se está avanzando en la investigación para lograr superar estos obstáculos: implantes más eficaces, que permitan una mayor resolución ocular así como una menor invasión de tejido, mayor autonomía etc.  Es cuestión de tiempo, esperemos que sea un breve espacio de tiempo, que personas como Terho recuperen lo que perdieron en su niñez…

Hay ojos que miran, – hay ojos que sueñan,
hay ojos que llaman, – hay ojos que esperan,
hay ojos que ríen – risa placentera,
hay ojos que lloran – con llanto de pena,
unos hacia adentro – otros hacia fuera.
Son como las flores – que cría la tierra.
Mas tus ojos verdes, – mi eterna Teresa,
los que están haciendo – tu mano de hierba,
me miran, me sueñan, – me llaman, me esperan,
me ríen rientes – risa placentera,
me lloran llorosos – con llanto de pena,
desde tierra adentro, – desde tierra afuera.
En tus ojos nazco, – tus ojos me crean,
vivo yo en tus ojos – el sol de mi esfera,
en tus ojos muero, – mi casa y vereda,
tus ojos mi tumba, – tus ojos mi tierra.

Miguel de Unamuno

Referencias

Bennett, J, Ashtari, M, Wellman, J, Marshall, KA, Cyckowski, LL, Chung, DC, McCague, S, Pierce, EA, Chen, Y, Bennicelli, JL, Zhu, X, Ying, GS, Sun, J, Wright, JF, Auricchio, A, Simonelli, F, Shindler, KS, Mingozzi, F, High, KA, & Maguire, AM (2012). AAV2 gene therapy readministration in three adults with congenital blindness. Science translational medicine, 4 (120) PMID: 22323828

Hauswirth, W., Aleman, T., Kaushal, S., Cideciyan, A., Schwartz, S., Wang, L., Conlon, T., Boye, S., Flotte, T., Byrne, B., & Jacobson, S. (2008). Treatment of Leber Congenital Amaurosis Due to Mutations by Ocular Subretinal Injection of Adeno-Associated Virus Gene Vector: Short-Term Results of a Phase I Trial Human Gene Therapy, 19 (10), 979-990 DOI: 10.1089/hum.2008.107

Notas

  1. AAV2 gene therapy readministration in three adults with congenital blindness.
Publicado por José Luis Moreno en MEDICINA, 3 comentarios