Australopithecus

El arbusto evolutivo. 2. Los homininos arcaicos

El arbusto evolutivo. 2. Los homininos arcaicos

     Última actualizacón: 4 abril 2020 a las 18:38

En el grupo de los homininos arcaicos reunimos todos los taxones que no son inequívocamente Homo ni Paranthropus: incluye dos géneros, Australopithecus y Kenyanthropus. La paleoantropología tiene serios problemas para explicar cómo surgió el género Australopithecus. Hasta la fecha, la explicación más aceptada es que Ardipithecus dio lugar al nuevo género en el valle del Rift (otro de los motivos por los que el lugar donde fue hallado Sahelanthropus resulta tan inquietante). Así, apenas 200.000 años después de que Ar. Ramidus deambulara por las junglas de lo que hoy conocemos como Etiopía, un nuevo hominino hacía su aparición con rasgos inequívocos de un bipedismo obligado —aunque con posibles reminiscencias de locomoción arbórea—. Junto a la bipedia, el aumento del tamaño de los molares y del grosor del esmalte dental son las características básicas que definen a este grupo.

Los australopitecinos no constituyen en realidad un único clado ya que agrupa algunas pero no todas las especies descendientes de un antepasado común. Así, los científicos hacían una distinción informal entre ejemplares «gráciles» y «robustos» que ahora conocemos como dos géneros distintos: Australopithecus los primeros y Paranthropus los segundos. Por este motivo, hasta que no dispongamos de las muestras suficientes ni de los métodos de análisis adecuados para generar una filogenia fiable, tiene poco sentido revisar esta terminología que se encuentra muy extendida.

Yacimientos de los homininos arcaicos.

Australopithecus anamensis

Nombre taxonómico: Australopithecus anamensis ―Leakey, et al. (1995)― se halla restringido en la actualidad al este de África. El primer fósil descubierto fue la parte distal de un húmero izquierdo (KNM-KP 271) en 1967 en Kanapoi (Kenia). Otros yacimientos que han aportado fósiles al hipodigma son Allia Bay en Kenia, y el área de estudio del Middle Awash en Etiopía. Antigüedad: entre 4,19 y 3,72 Ma.

Holotipo Australopithecus anamensis.
KNM-KP 29281, mandíbula en vista oclusal (superior izquierda), lateral derecha (superior derecha) y medial (centro a la derecha). En la parte inferior, el temporal en vista inferior (abajo a la izquierda) y lateral (abajo a la derecha). (Leakey, et al. 1995)

Espécimen tipo: KNM-KP 29281. Se trata de una mandíbula con la dentición completa y un fragmento del hueso temporal que pertenece probablemente al mismo individuo. Ambos fueron recuperados en 1994 en Kanapoi.

Características y comportamiento: Entre los fósiles contamos con mandíbulas, dientes y elementos postcraneales de las extremidades superiores e inferiores. La mayoría de las diferencias entre Au. anamensis y Au. afarensis guardan relación con la dentición. En algunos aspectos, los dientes de Au. anamensis son más primitivos que los de Au. afarensis (con unos caninos grandes), pero en otros guardan parecido con los parántropos (esmalte dental grueso). Esta especie aporta la primera evidencia de incremento en el tamaño de los molares, que se asocia con el consumo de alimentos más duros y su vida en la sabana.

Los restos de las extremidades superiores son similares a los de Au. afarensis (con una morfología similar a la de los primates arbóreos), pero la tibia tiene rasgos asociados con la bipedia.

En 2016 se recuperó el primer cráneo asociado a especie (catalogado como MRD-VP-1/1). Tras dos años de trabajos se publicaron dos estudios, uno sobre la descripción del fósil y otro sobre el contexto geológico y la edad del mismo. La datación del fósil en 3,8 Ma nos indica que Australopithecus afarensis convivió en el tiempo con Australopithecus anamesis como mínimo durante 100.000 años. Esto pone en tela de juicio la hipótesis manejada hasta ahora de que Au. afarensis fuera el descendiente directo de Au. anamensis.

Referencia

Australopithecus afarensis

Nombre taxonómico: Australopithecus afarensis ―Johanson, et al. (1978)―. Se conoce únicamente en yacimientos del este de África. El primer fósil de esta especie, un fragmento de maxilar (Garusi 1) se recuperó en 1939 en Laetoli (Tanzania). La mayor parte del hipodigma proviene de Hadar pero otros yacimientos de Etiopía y Kenia han aportado más restos. Antigüedad: entre los 3,6 y 3 Ma (cerca de 4 Ma si se confirma su presencia en Belohdelie y Fejej).

Holotipo Australopithecus afarensis.
LH 4, vista oclusal. (Johanson, et al. 1978)

Espécimen tipo: LH 4. El espécimen tipo es una mandíbula hallada en Laetoli (Tanzania) en 1974 por el equipo de Mary Leakey ―Leakey, et al. (1976)―.

Características y comportamiento: Este es el hominino más antiguo del que contamos con un registro fósil bastante completo. El hipodigma incluye un cráneo bien conservado, cráneos parciales y fragmentados, muchas mandíbulas inferiores así como suficientes huesos de las extremidades como para poder estimar la estatura y masa corporal. Quizás el espécimen más conocido sea AL-288, la famosa «Lucy», una hembra adulta de la que conservamos casi el 80% de su esqueleto (si tomamos en cuenta la simetría bilateral). La mayoría de las estimaciones de la masa corporal la sitúan en el rango de los 30 a 45 kg de peso, una altura entre 1,10 y 1,30 metros de alto, y con una capacidad craneal estimada entre 400 y 550 cm3.

Tiene unos incisivos más pequeños que los de los actuales chimpancés, pero sus premolares y molares son relativamente más grandes. La comparación de los restos sugiere que las extremidades inferiores de AL-288 son sustancialmente más cortas que las de los humanos modernos de una estatura parecida. Tanto la forma de la pelvis como estas extremidades cortas sugieren que, aunque Au. afarensis era capaz de andar erguido, no estaba adaptado para un bipedismo prolongado. Tendría por tanto una locomoción particular: bípeda pero manteniendo cierta capacidad de desplazamiento por los árboles. Estas pruebas indirectas de su locomoción se completan con el descubrimiento de las «huellas de Laetoli», atribuidas a miembros de esta especie.

Las extremidades superiores, sobre todo la mano y la cintura escapular, poseen una morfología que se asocia a la locomoción arbórea. Aunque un estudio reciente argumenta que el dimorfismo sexual en este taxón está escasamente desarrollado, la mayoría de los investigadores opinan lo contrario.

Referencias

Australopithecus deyiremeda

Nombre taxonómico: Australopithecus deyiremeda ―Haile-Selassie, et al. (2015)― Recuperado en el área de estudio de Woranso-Mille, en la región de Afar (Etiopía). Antigüedad: entre 3,5 y 3,3 Ma.

Holotipo Australopithecus deyiremeda.
BRT-VP-3/1. a) vista oclusal; b) vista lateral; c) vista superior; d) vista medial; e) vista anterior. (Haile-Selassie, et al. 2015)

Espécimen tipo: BRT-VP-3/1. Un maxilar izquierdo con un incisivo y un molar.

Características y comportamiento: Pese a que cronológica y geográficamente coincide con Au. afarensis, los descubridores defienden que se trata de una nueva especie dadas las diferencias en la morfología de la mandíbula y el maxilar. Aún hay pocos restos para poder ofrecer un mayor detalle.

Referencia

Kenyanthropus (Australopithecus) platyops

Nombre taxonómico: Kenyanthropus platyops ―Leakey, et al. (2001)―. El primer fósil descubierto (KNM-WT 38350) era un fragmento de maxilar izquierdo recuperado en 1998 en Lomekwi, Turkana occidental (Kenia) por el equipo de Meave Leakey. Antigüedad: entre 3,5 y 3,3 Ma.

Holotipo Kenyanthropus platyops.
KNM-WT 40000. a) Vista lateral (la línea marca la separación entre el neurocráneo bastante distorsionado y la cara bien conservada; b) Vista superior; c) Vista anterior; d) Vista oclusal del paladar. (Leakey, et al. 2001)

Espécimen tipo: KNM-WT 40000. Es un cráneo relativamente completo pero deformado hallado en 1999 en Lomekwi.

Características y comportamiento: El cráneo tiene una configuración «grácil» según los autores del hallazgo, pero su antigüedad era mayor que la de cualquier otro espécimen del linaje grácil. Las principales razones que llevaron a Leakey y colaboradores a no asignar este material a Au. afarensis fueron dos: primero, el rasgo derivado que más salta a la vista, el de un plano muy vertical por debajo de la nariz que le proporciona el aspecto de cara plana al que se refiere su nombre; y en segundo lugar, unos molares relativamente pequeños pero con un esmalte dental parecido a Au. afarensis. A pesar de esta combinación única de morfología facial y dental, algunos autores como Tim White sostienen que un nuevo taxón no está justificado porque el cráneo puede ser el cráneo deformado de un Au. afarensis. Además, como hemos señalado al inicio, la estrategia adaptativa distintiva que podría deducirse de esa cara plana —y que sería necesaria para definir un nuevo género— no queda nada clara (de ahí que la mayoría de especialistas se refieran a este ejemplar como Australopithecus platyops).

Referencias

Australopithecus bahrelghazali

Nombre taxonómico: Australopithecus bahrelghazali ―Brunet, et al. (1996)―. Se ha identificado únicamente por una mandíbula parcial y un diente aislado encontrados en la región de Bahr el Ghazal en del desierto del Djourab (República de Chad) 1. Antigüedad: entre 3,5 y 3 Ma.

Holotipo Australopithecus bahrelghazali. KT 12/H1, a) Vista oclusal; b) vista anterior; c) vista vestibular derecha. (Brunet, et al. 1996).

Espécimen tipo: KT 12/H1. Se trata del fragmento de una mandíbula de un adulto que contiene un incisivo, los dos caninos y los dos premolares de ambos lados.

Características y comportamiento: Los descubridores mantienen que el esmalte dental más grueso lo distingue de Ar. ramidus, mientras que una sínfisis mandibular más pequeña y vertical (indicativa de una cara con un menor prognatismo) lo distinguen de Au. afarensis. De hecho, en un principio, la clasificación provisional de esta mandíbula fue la de Australopithecus aff. afarensis, pero un año más tarde, cuando Brunet lo comparó con los restos de Au. afarensis conservados en el Museo Nacional de Addis Abeba, se revisó y les otorgó el rango de nueva especie.

Parece una variante regional de Au. afarensis —y de hecho muchos investigadores agrupan estos restos en esa especie— pero el descubrimiento de Chad extiende sustancialmente el alcance geográfico de los primeros homininos y nos recuerda que los hitos importantes en la evolución humana (como la especiación y la extinción) pueden haber ocurrido bien lejos de las pequeñas regiones (en comparación con el tamaño del continente africano) donde existen yacimientos de los primeros homininos.

Referencia:

Australopithecus africanus

Nombre taxonómico: Australopithecus africanus ―Dart (1925)―. La mayoría de los fósiles de este espécimen provienen de dos cuevas, Sterkfontein y Makapansgat, aunque también se han recuperado en la cueva de Gladysvale. Antigüedad: entre 3 y 2,4 Ma.

Holotipo Australopithecus africanus. Taung 1, en vistas frontal, lateral derecha e inferior. (Dart, 1925)

Espécimen tipo: Taung 1. Se trata de un cráneo juvenil con un molde endocraneal parcial, recuperado en 1924 en Taung, Sudáfrica. Curiosamente, se pone en duda el verdadero sentido evolutivo del «niño de Taung» ya que la enorme cantidad de ejemplares procedentes de los otros yacimientos presentan rasgos bien distintos a éste. Estas dudas se ven incrementadas cuando tenemos en cuenta que Taung 1 es el único espécimen de hominino hallado en ese yacimiento.

Características y comportamiento: Con Au. africanus contamos con uno de los mejores registros fósiles de los homininos antiguos. Disponemos de abundantes muestras del cráneo, la mandíbula y la dentición. Por otro lado, el esqueleto postcraneal –y particularmente el esqueleto axial (la parte central del cuerpo formada por el torax, columna vertebral, cráneo, pelvis, etc.)– está peor representado, pero al menos tenemos una muestra de cada uno de los huesos largos, aunque gran parte de los fósiles han sido aplastados por rocas antes de que fosilizaran y están deformados.

La imagen que surge de los análisis morfológicos y funcionales sugiere que aunque Au. africanus era capaz de andar erguido (era bípedo) estaba mejor adaptado para desplazarse por los árboles (era un bípedo ocasional y no obligado) que otros taxones arcaicos como Au. afarensis. Tenía unos premolares relativamente grandes, y salvando los caninos reducidos, el cráneo es de aspecto simiesco. Su capacidad craneal media es de cerca de 485 cm3. Los restos hallados en Sterkfontein sugieren que tanto las hembras como los machos presentan diferencias en su tamaño corporal –dimorfismo sexual– pero no en el grado de Au. afarensis.

Referencia

Australopithecus sediba

Nombre taxonómico: Australopithecus sediba —Berger, et al. (2010)—. Todos los fósiles de este taxón se han recuperado en un único yacimiento: Malapa (Sudáfrica). Estudios radiométricos combinados con paleomagnetismo han proporcionado una fecha consistente para este ejemplar de 1,97 Ma.

Holotipo Australopithecus sediba.
UW88-50 (MH1) elementos craneodentales en A. Vista superior; B. Vista frontal; C. Vistas laterales y D. mandíbula juvenil UW88-8 (MH1)
(Berger, et al. 2010)

Espécimen tipo: MH 1. Un ejemplar compuesto por un cráneo juvenil (UW88-50), una mandíbula fragmentada (UW88-8) y diversas partes del esqueleto.

Características y comportamiento: Se distingue de Au. anamensis, Au. afarensis y Au. garhi por la falta de las apomorfias típicas de esos australopitecos, como la proyección de la cara (prognatismo). Tampoco posee un gran aparato mandibular, la megadontia extrema de premolares y molares y las marcas pronunciadas de inserción muscular en el cráneo. En definitiva, estamos ante un aparato masticador menos desarrollado, con una cara y mandíbula de tamaño reducido.

Según sus descubridores Au. sediba se acerca más a Au. africanus, sobre todo por su «gracilidad» y la baja capacidad craneal. Sin embargo, las diferencias también son importantes y hace que esta especie se parezca a los ejemplares antiguos de Homo. El análisis de los fósiles del pie desvela un conjunto de rasgos primitivos asociados a la capacidad de trepar por los árboles, así como otros derivados que apuntan a la bipedia. Lo mismo sucede con los huesos de la mano y la muñeca, que indican una capacidad para desplazarse por los árboles y un agarre de precisión que podría indicar el uso de herramientas.

Referencia

Notas

  1. El mismo yacimiento donde años más tarde se descubrió a Sahelanthropus tchadensis.
Publicado por José Luis Moreno en ANTROPOLOGÍA, 0 comentarios
Buscando agujas en un pajar planetario

Buscando agujas en un pajar planetario

     Última actualizacón: 17 septiembre 2017 a las 16:13

Volvamos ahora la vista a nuestros museos geológicos más ricos, y ¡qué triste espectáculo contemplamos! Que nuestras colecciones son incompletas, lo admite todo el mundo. Nunca debiera olvidarse la observación del admirable paleontólogo Edward Forbes, a saber, que muchísimas especies fósiles son conocidas y clasificadas por ejemplares únicos, y a menudo rotos, o por un corto número de ejemplares recogidos en un solo lugar. Tan sólo una pequeña parte de la superficie de la tierra se ha explorado geológicamente, y en ninguna con el cuidado suficiente, como lo prueban los importantes descubrimientos que cada año se hacen en Europa.

Charles Darwin, El Origen de las especies.

Yacimiento de Dmanisi - cortesía de David Lordkipanidze

Yacimiento de Dmanisi – cortesía de David Lordkipanidze

Comencemos contando una historia. Y como en toda buena historia, tenemos un héroe y un largo viaje por recorrer. Nos situaremos primero en una selva tropical como pudiera ser la de Guinea Ecuatorial. Vemos un pequeño animal en una rama que, protegido por el denso follaje, degusta lo que parece una sabrosa fruta. Aunque él no lo sabe, hace tiempo que el clima está cambiando, lo que ha provocado una importante reducción de la masa boscosa que forma su hábitat natural. Pasado el tiempo, cada vez tiene que desplazarse más lejos para obtener alimento y además, en lugar de hacerlo de rama en rama como era su costumbre, tiene que bajar al suelo ya que la sabana está ganando terreno.

De moverse a cuatro patas a hacerlo sobre las dos traseras fue un paso que, por supuesto, él no buscó pero que le resultó muy útil: desarrolló extremidades vigorosas que le permitieron cubrir grandes distancias, unos pulmones potentes para poder correr, y una vista ágil y movimientos furtivos para cazar las presas que ahora constituyen su principal fuente de alimento. La lucha por la existencia era dura, y se vio obligado a poner en juego todas sus facultades de inventiva e ingenio: fabricó y utilizó por primera vez armas de madera y, más adelante, comprobó que la piedra era más resistente para ese fin, perfeccionando diferentes técnicas para obtener una mayor variedad de utensilios.

Sus desplazamientos se hicieron cada vez más largos, llegando a recorrer miles de kilómetros. Encontrar hábitats cada vez más fríos ya no supuso ningún problema, gracias a su inteligencia y la cooperación con otros congéneres, pudo fabricar ropas con que abrigarse, controló el uso del fuego para calentarse y cocinar, y llegó a convertirse, en definitiva, en la especie dominante del planeta 1.

Contando historias

Misia Landau se graduó en biología en la Universidad de Oxford, pero su verdadero interés estaba en la neurología. Por ese motivo se matriculó en el programa de posgrado en antropología de la Universidad de Yale para estudiar la historia evolutiva de nuestro cerebro. Sin embargo, su otra pasión de la juventud, la literatura, trastocó sus planes. En lugar de seguir investigando acerca de la evolución del cerebro, planteó en su tesis la existencia de un fuerte vínculo entre la literatura y la paleoantropología 2. Descubrió en definitiva que los sesudos análisis científicos donde se explicaba la evolución del hombre no hacían otra cosa que narrar historias, relatos similares a los cuentos de hadas que todos conocemos y también nuestros hijos.

Landau sostenía que la descripción de la evolución humana que se hacía en las publicaciones especializadas seguía una estructura perfectamente reconocible, unos puntos recurrentes que Vladímir Propp había detectado hacía tiempo en los cuentos populares: en primer lugar se nos presenta un humilde héroe (en nuestro caso, un simio) en un entorno inicialmente estable. A continuación es expulsado de ese lugar seguro (como consecuencia de un cambio climático) y se ve obligado a iniciar un viaje peligroso donde debe superar una serie de pruebas (nuevas condiciones ambientales, enfrentamientos con otros depredadores…) que le obligan a demostrar su valor (mediante la adopción de la postura bípeda, el desarrollo de la inteligencia etc.). Tras estos primeros logros, nuestro héroe desarrolla nuevas ventajas (las herramientas) sólo para verse sometido a nuevas pruebas (los rigores de las glaciaciones) que al final le llevan a triunfar. Ese triunfo es el Homo sapiens 3.

Así, aunque a veces en diferente orden, los paleoantropólogos de comienzos del siglo pasado reconocían cuatro hitos fundamentales en nuestra evolución: el paso de los árboles al suelo; la postura erguida al andar; la expansión del cerebro y el desarrollo de la inteligencia y del lenguaje; y por último, el nacimiento de la tecnología, la moral y la sociedad, en definitiva, la civilización.

A pesar de que hoy en día sabemos que las cosas no sucedieron exactamente así, que el proceso evolutivo no persigue un fin (la creación de Homo sapiens) ni tampoco que «la evolución del hombre debió responder a un plan deliberado de algún poder espiritual» 4, hoy en día siguen vigentes antiguos debates acerca de la importancia de cada uno de esos momentos claves. Debates que se avivan con los descubrimientos de nuevos fósiles, la mejora de las técnicas de análisis, y el concurso de otras disciplinas científicas.

Reconozcamos por tanto que la paleoantropología es apasionante. ¿Cómo podría ser de otra manera si es el medio que tiene el ser humano racional de buscar las respuestas sobre su origen?

Cita Broom

Pero como hemos apuntado, para llevar a cabo su tarea los científicos necesitan contar con fósiles, esos vestigios de nuestro pasado evolutivo que han llegado a convertirse en auténticas agujas en un pajar planetario. No en balde la fosilización es un proceso tremendamente complejo que comienza con la muerte del animal, pero que culmina miles e incluso millones de años más tarde. Pensándolo bien, el hecho de que seamos capaces de encontrar algunos restos ya es de por sí una proeza.

Aunque por suerte hoy vivimos un momento dulce. En primer lugar, se ha producido un notable incremento del número de fósiles que han visto la luz: once nuevas especies y cuatro nuevos géneros identificados desde 1987. Los descubrimientos en los yacimientos de Atapuerca, Dmanisi, Denisova, o la cueva Rising Star en Sudáfrica, han permitido añadir nuevas ramas a nuestro arbusto genealógico. Además, la mejora en las técnicas de datación y los estudios paleoclimáticos han proporcionado la precisión cronológica necesaria para relacionar adecuadamente esos fósiles con el ambiente en el que evolucionaron (aunque no en todos los casos: el flamante Homo naledi, descrito recientemente, sería el más llamativo fracaso).

En segundo término, se están planteando atrevidas soluciones para los graves problemas detectados en la reconstrucción de esta enmarañada genealogía; propuestas que generan debates acalorados como el surgido hace poco en una cuestión clave, la aparición del género Homo, y que la adelanta a hace 2,8 millones de años, una fecha demasiado cercana a los australopitecinos para desaprobación de algunos.

La tercera razón a destacar es el peso cada vez mayor que tienen los análisis de ADN antiguo que permiten secuenciar muestras de hace cientos de miles de años. Este tipo de análisis ayudan a establecer las relaciones de parentesco entre nuestros antepasados, así como a conocer la forma en que nuestra especie sigue evolucionando hoy en día.

Pero no es oro todo lo que reluce, y la afirmación de Darwin con la que comienza este artículo sigue siendo tan válida ahora como cuando se publicó hace más de ciento cincuenta años. De hecho, algunos capítulos de la historia humana simplemente no aparecen en el registro fósil, mientras que otros se apoyan en pruebas tan escasas que son poco más que especulaciones.

Por ejemplo, sólo conocemos unos pocos fósiles de más de dos millones de años de antigüedad que podamos atribuir sin dudas al género Homo, y los que hay, son restos dispersos y fragmentados. Como ha dicho William Kimbel, paleoantropólogo de la Universidad del Estado de Arizona: «Hay muy pocos especímenes. Podrías meterlos todos en una caja de zapatos y todavía te sobraría espacio para guardar los zapatos. 5» La situación con el resto de homininos no es mucho mejor.

Un poco de historia

El principal motivo de esta carestía tiene que ver con el proceso mismo de fosilización que hace muy difícil que los restos se conserven adecuadamente. A esta dificultad hay que añadir lo complicado que resulta localizar yacimientos productivos puesto que los fósiles tienen que volver a la superficie tras la erosión de los sedimentos que los cubren. De ahí que la suerte, la casualidad o el azar hayan sido los principales aliados de esta ciencia: hay investigadores que han pasado décadas de su carrera excavando sin hallar nada de interés; mientras que otros, en su primera o segunda temporada, han descubierto un espécimen que ha cambiado por completo la disciplina 6.

Formacion de un yacimiento

Formacion de un yacimiento

Veamos algunos ejemplos. El primer resto de un Neandertal se encontró en unas canteras de Gibraltar en 1848 (antes incluso de los hallazgos en el valle Neander que daría nombre a la especie). Cuando el nuevo gobernador de la prisión militar llegó al Peñón, decidió que los presos no se dedicarían únicamente a partir las rocas destinadas a la reconstrucción de las instalaciones militares, sino que también excavarían en nuevas zonas con el objetivo de encontrar fósiles (el gobernador era un ávido coleccionista). Así apareció el cráneo conocido hoy como Gibraltar 1.

Sin embargo, debemos reconocer que fue Eugène Dubois el primero que viajó deliberadamente a un lugar (las Indias Orientales Holandesas, la actual Indonesia) con el objetivo de encontrar el eslabón perdido entre los simios y los seres humanos modernos (a diferencia de Darwin y otros, Dubois consideraba Asia y no África como la “cuna de la humanidad”). Tras años de esfuerzos, sus “excavadores” (entre comillas porque eran presos condenados a trabajos forzados) encontraron un fémur y parte de un cráneo que este médico apasionado de la evolución humana designó como Pithecanthropus erectus, y que hoy reconocemos como un miembro más de nuestro género: Homo erectus 7.

Cita Le Gros

Por otro lado, unos mineros localizaron las famosas cuevas de Sudáfrica donde han aparecido importantes restos de Australopithecus (de hecho, el famoso cráneo del niño de Taung se extrajo de la roca por los propios mineros, quienes lo entregaron a Raymond Dart para su análisis). Lo mismo sucedió en Etiopía, donde gracias a unos geólogos que buscaban minerales se descubrió la riqueza de los yacimientos del Awash medio; o en Tanzania, donde un lepidopterólogo encontró la garganta de Olduvai.

Para último, no podemos olvidar dos descubrimientos muy mediáticos que han tenido como protagonista al paleoantropólogo Lee Berger. El primero fue el hallazgo de Australopithecus sediba. El espécimen tipo de este hominino lo encontró Matthew, el hijo de Berger, mientras paseaba cerca del lugar donde su padre llevaba excavando casi dos décadas. Matthew tropezó, literalmente, con una mandíbula con un diente 8. El segundo caso es el de Homo naledi. Berger contrató a un geólogo y varios espeleólogos para que inspeccionaran paulatinamente el inmenso sistema de cuevas calizas que forman parte del yacimiento sudafricano llamado Cuna de la Humanidad. Ellos realizarían la tediosa y casi siempre improductiva labor de buscar yacimientos, y así él podía centrar sus esfuerzos en otras tareas. En cualquier caso, su idea tuvo éxito y fruto de ello se localizó la impresionante cueva Rising Star que promete ofrecer muchas sorpresas.

Nuevas técnicas, nueva ciencia

bibliografia

Parte de los libros consultados para escribir esta anotación (colección del autor).

Sabemos que debido al proceso de fosilización, los restos de nuestros antepasados se encuentran mayoritariamente en ciertos conjuntos de rocas de características similares, de ahí que conocer la geología del terreno sea fundamental para localizar con éxito yacimientos relevantes. Por ello los paleoantropólogos han venido analizando mapas geológicos y topográficos para saber dónde pueden encontrar fósiles expuestos en la superficie. Sin embargo, al final hay que peinar muchos kilómetros a pie y soportando duras condiciones climáticas, además de que, a pesar de tener los ojos bien entrenados, en demasiadas ocasiones los fósiles pasan desapercibidos.

Pero, ¿y si pudiéramos utilizar las imágenes vía satélite para localizar yacimientos fósiles productivos? Eso es precisamente lo que persiguen varios equipos de investigadores: optimizar esa búsqueda mediante el uso de técnicas de teledetección y el empleo de herramientas como sistemas de información geográfica, que permite combinar y apilar múltiples capas de información espacial para identificar patrones. La idea es que si contamos con imágenes vía satélite de alta resolución de una región dada, y algunos yacimientos ya conocidos con los que “entrenar” el modelo, seremos capaces de generar un mapa personalizado que indique nuevos lugares donde, con gran probabilidad, podamos encontrar fósiles.

El primer uso de la teledetección para la búsqueda de fósiles de nuestros antepasados lo emplearon Berhane Asfaw, Tim White y sus colegas del proyecto de inventario paleoantropológico de Etiopía. Utilizaron este tipo de imágenes para identificar afloramientos rocosos que pudieran albergar fósiles en el valle del Rift y la depresión de Afar, conocidas áreas de interés pero que debido a su extensión y complicada climatología eran difíciles y costosas de explorar. Este proyecto creó un nuevo paradigma de investigación que ha cosechado grandes éxitos, y que sigue perfeccionándose con cada avance en las distintas técnicas empleadas.

En cualquier caso debemos ser conscientes que este tipo de tecnologías servirán para reducir los costes de exploración y extracción de los fósiles. Pero al final, el trabajo más delicado seguirá haciéndose sobre el terreno en calurosos desiertos, llanuras rocosas y en profundas cuevas con pequeñas herramientas de mano.

 

Referencias

Anemone, R.; Emerson, C. y Conroy, G. (2011), «Finding fossils in new ways: an artificial neural network approach to predicting the location of productive fossil localities». Evolutionary Anthropology, vol. 20, núm. 5, p. 169-180.

Anemone, R. L.; Conroy, G. C. y Emerson, C. W. (2011), «GIS and paleoanthropology: incorporating new approaches from the geospatial sciences in the analysis of primate and human evolution». American Journal of Physical Anthropology, vol. 146, núm. 54, p. 19-46.

Ciochon, R. L. y  Corruccini, R. S. (1983), New interpretations of ape and human ancestry. New York: Plenum Press, xxiv, 888 p.

Cole, S. (1975), Leakey’s luck: the life of Louis Seymour Bazett Leakey, 1903-1972. Londres: William Collins Sons & Co, 448 p.

Delson, E. y  History, A. M. o. N. (1985), Ancestors, the hard evidence: proceedings of the symposium held at the American Museum of Natural History April 6-10, 1984 to mark the opening of the exhibition «Ancestors, four million years of humanity». New York: A. R. Liss, xii, 366 p.

Johanson, D. C. y  Edey, M. A. (1987), El primer antepasado del hombre. Barcelona: Planeta, 347 p.

Kalb, J. E. (2001), Adventures in the bone trade: the race to discover human ancestors in Ethiopia’s Afar Depression. New York: Copernicus Books, xv, 389 p.

Landau, M. (1984), «Human evolution as narrative: have hero myths and folktales influenced our interpretations of the evolutionary past?». American Scientist, vol. 72, núm. 3, p. 262-268.

Leakey, R. E. y  Lewin, R. (1977), Origins: what new discoveries reveal about the emergence of our species and its possible future. London: Macdonald and Jane’s, 264 p.

Leakey, R. E. (1989), Leakey. Barcelona: Salvat, 195 p.

Leakey, L. S. B. (1937), White African. London: Hodder and Stoughton, 320 p.

Lewin, R. (1989), La interpretación de los fósiles: una polémica búsqueda del origen del hombre. Barcelona: Planeta, 328 p.

Tobias, P. V. (1985), Hominid evolution: past, present, and future. Proceedings of the Taung Diamond Jubilee International Symposium, Johannesburg and Mmabatho, Southern Africa, 27th January-4th February 1985. New York: Alan R. Liss Inc., xxix, 499 p.

separador2

  1. Este relato acerca de la evolución del ser humano estuvo en vigor durante décadas. Para esta reconstrucción he tomado datos de obras de importantes paleoantropólogos de comienzos del siglo pasado como Henry Fairfield Osborn, William King Gregory, Arthur Keith y Grafton Elliot Smith.
  2.  La rama de la antropología que estudia la evolución humana y su registro fósil.
  3.  El trabajo de Landau en el departamento de historia de la ciencia de la Universidad de Harvard le llevó a publicar su primer libro: Narratives of human evolution.
  4. Como sostenía el famoso paleontólogo Robert Broom.
  5.  Fischman, J. (2011), «Medio mono, medio humano». National Geographic España, vol. 29, núm. 2, p. 78-91.
  6. Los casos por ejemplo de Don Johanson o Richard Leakey.
  7.  La controversia surgida a raíz de la ubicación de estos fósiles en nuestro árbol evolutivo nos enseña la parte mezquina de esta ciencia: Dubois se enrocó tan firmemente por las críticas que recibía que decidió enterrar los fósiles bajo su comedor y durante treinta años se negó a enseñárselos a nadie.
  8.  Noticia publicada en el New York Times, 9 de abril de 2010.
Publicado por José Luis Moreno en ANTROPOLOGÍA, 0 comentarios
¿Se aclara el origen del género Homo? Los restos de Ledi-Geraru

¿Se aclara el origen del género Homo? Los restos de Ledi-Geraru

     Última actualizacón: 11 marzo 2018 a las 17:28

Durante décadas, los paleoantropólogos han querido encontrar fósiles que sirvieran para aclarar el origen del género Homo, nuestro linaje, pero hasta ahora los especímenes recuperados en el intervalo de tiempo crítico entre hace 3 y 2,5 millones de años (Ma), cuando se estima que surgió, han sido escasos y aparecen mal conservados. Hoy analizamos la publicación el pasado 4 de marzo de tres trabajos que pueden dar un vuelco a nuestro conocimiento de este periodo clave.

En el primero de ellos 1 se hace una revisión de un conocido fósil asignado a Homo habilis. Se trata de una reconstrucción en 3D del cráneo y la mandíbula hallados en la Garganta de Olduvai en los años 60 del siglo pasado. Los autores han llegado a la conclusión de que esta especie es más antigua de lo que se creía y pudo aparecer hace 2,3 Ma en lugar de los 1,8 Ma estimados hasta ahora.

Los otros dos artículos, publicados en la revista Science, van más allá. El primero 2 describe una nueva mandíbula de una especie sin catalogar pero que se atribuye al género Homo. El segundo 3 analiza el contexto geológico en el que se descubrió esa mandíbula. La datación precisa de ese sustrato permite adelantar la aparición de este género a los 2,8 Ma. Nos encontraríamos por tanto ante el humano más antiguo conocido hasta la fecha.

Historia

Entre 1960 y 1964, el equipo formado por el matrimonio Leakey y sus colaboradores encontraron en la Garganta de Olduvai un conjunto de restos fósiles cuya interpretación generó una gran controversia desde el primer momento. Uno de ellos, OH 7 (Olduvai hominid nº 7, apodado Jonny´s child) 4 correspondía a una mandíbula inferior, un hueso parietal fragmentado y varios huesos de la mano. Junto a otros especímenes localizados en la zona, se pensó que por la edad y por su morfología apuntaban hacia un tipo de australopitecino. Sin embargo, en 1964, Leakey, Tobías y Napier propusieron incluir todos esos restos en el género Homo, dentro de una nueva especie: Homo habilis 5. Conocido como el hombre hábil (habilis significa en latín “capaz, habilidoso, mentalmente desarrollado, vigoroso”) se consideró la especie más antigua de nuestro género al ser datada en el rango de 1,9 y 1,6 Ma.

OH 7.

Como hemos apuntado, esta adscripción provocó un intenso debate (que continúa hoy en día) donde todos los rasgos morfológicos han sido criticados con severidad: algunos discuten que este material sea lo suficientemente diferente a Australopithecus africanus como para merecer el reconocimiento de una nueva especie, mientras que otros sostienen que son indistinguibles de Homo erectus. De esta forma, los especímenes de Homo habilis han sido reclasificados como pertenecientes tanto a Australopithecus como a Homo erectus, por lo que la pregunta sería: ¿cómo es posible que los especialistas incluyan unos mismos fósiles en dos géneros tan diferentes? La respuesta tiene que ver con la morfología. Estos restos presentan una morfología intermedia, cuya adscripción a una u otra categoría depende de si se hace hincapié en las semejanzas o en las diferencias.

Además de la morfología y su adscripción taxonómica, para que Homo habilis ocupe la situación de especie fundadora del género humano hay que resolver el problema de la cronología, porque sus restos fósiles son virtualmente contemporáneos a los de Homo erectus, una especie más moderna, más “evolucionada”, es decir, morfológicamente más próxima a nuestra especie. Debemos tener presente que entre Homo habilis y los últimos australopitecos como Lucy (que también vivieron en Etiopía) medió casi un millón de años del que no conservamos restos.

Y en este enorme vacío es donde entra en escena la nueva mandíbula descubierta: los autores sostienen que este nuevo fósil representa un hominino justo de ese periodo y en plena metamorfosis.

Reconstrucción del espécimen OH 7

Como ya hemos apuntado, los restos recuperados adscritos a Homo habilis eran fragmentarios y estaban muy deformados, complicando enormemente la tarea de compararlos con otros fósiles. Ahora, un grupo de investigadores de Alemania, Tanzania y Reino Unido ha logrado reconstruir digitalmente los fragmentos del cráneo y la mandíbula de este fósil, y así han podido compararlos con otros fósiles tempranos del género Homo.

Reconstrucción cráneo OH 7.

La mandíbula reconstruida es muy primitiva, con una arcada dental larga y estrecha más similar a Australopithecus afarensis (la famosa Lucy) y a otros simios actuales que a las arcadas parabólicas de Homo sapiens u Homo erectus. Además, esta forma de la mandíbula tampoco es compatible con otros fósiles previamente asignados a Homo habilis como el maxilar AL 666-1.

La morfología de este último se separa claramente de los australopitecinos, aunque clasificarlo dentro de una especie concreta de Homo es más complejo porque los rasgos que presenta son derivados pero compartidos por todo el género. La conclusión es que AL 666-1 presenta rasgos más modernos que OH 7 aunque con una antigüedad mucho mayor: 500.000 años. Por este motivo, los investigadores sostienen ahora que la mandíbula OH 7 debe tener una antigüedad como mínimo de 2,3 Ma, y que el linaje de Homo habilis se originó antes de lo pensado hasta ahora. De esta forma se llenaría el hueco que existía entre los restos disponibles de los primeros Homo y el momento de la supuesta aparición del género.

Restos hallados en Ledi Geraru.

Por otro lado, la reconstrucción de los huesos parietales de OH 7 confirma que el cráneo no es tan primitivo, y ha permitido establecer mejor su volumen endocraneal: entre 729 y 824 cc. Este valor es mayor que cualquier otro publicado anteriormente para estos restos, y hace hincapié en la coincidencia casi completa en el tamaño del encéfalo entre las especies de los primeros Homo.

Un nuevo fósil: LD 350-1

El estudio del nuevo fósil ha sido publicado en la revista Science 2 y describe parte de una mandíbula, identificada como LD 350-1, hallada gracias al proyecto de investigación Ledi-Geraru en la Región de Afar (Etiopía). Debido a su fragmentación y al pobre estado de conservación, los investigadores han decidido ser conservadores y catalogar el fósil dentro del género Homo, especie indeterminada.

LD 350.

Nos encontramos con la parte izquierda de una mandíbula inferior que conserva cinco dientes. El análisis morfológico indica que el fósil combina rasgos primitivos de los australopitecinos con características más modernas del género Homo. Por un lado, posee unos dientes pequeños, molares estrechos y premolares simétricos como en los Homo posteriores; mientras que el retroceso de la barbilla (un rasgo primitivo) relaciona este espécimen con un antepasado parecido a Lucy.

La datación de los restos se analiza en otro estudio publicado de forma simultánea 3. La datación de LD 350-1 y la fauna asociada se ha realizado triangulando varios métodos: la datación radiométrica de cenizas volcánicas mediante el método argón – argón (40Ar/39Ar), geoquímica, paleomagnetismo y fauna. Sin embargo hay un dato que llama la atención y debe hacernos ser cautos: la mandíbula se encontró en la superficie, y aunque los investigadores dicen que el desplazamiento de las rocas datadas de forma fiable ha sido mínimo (la mandíbula y este fragmento de roca estaban situados diez metros por encima de otro nivel de origen volcánico datado en 2,84 Ma), quedan ciertas dudas de la antigüedad que se le atribuye.

Aún así, el análisis de los resultados ha permitido concluir que nuestro espécimen vivió en un hábitat abierto o mezcla de praderas mixtas y matorrales con bosques de galería al borde de ríos o humedales (podemos imaginarlo similar al actual Serengeti o Masai Mara). Allí podíamos encontrar antílopes prehistóricos, hipopótamos, elefantes primitivos, cocodrilos y peces que han permitido datar el conjunto entre los 2,5 y 2,8 Ma.

Conclusiones

El debate acerca de la especie Homo habilis viene de antiguo. En Olduvai se han  encontrado varios fósiles (OH 13, OH 24, OH 7 y OH 16 entre otros) que pueden dividirse en dos grupos en atención a sus diferencias morfológicas, lo que ha llevado a que algunos paleoantropólogos planteen la presencia de dos especies distintas: los ejemplares más grandes serían considerados verdaderos Homo habilis, mientras que los demás, de menor tamaño y capacidad craneal, podrían agruparse dentro de unos australopitecinos contemporáneos de Homo habilis y quizás hasta de Homo erectus. En contra de este planteamiento se argumenta que nos encontramos ante una misma especie pero que presenta una gran variabilidad con dimorfismos sexuales (diferencia de tamaño en función del sexo) y variaciones geográficas importantes (adaptación a cada ambiente en particular).

El nuevo hallazgo de Ledi-Geraru, datado en 2,8 Ma y por tanto cerca del pretendido origen del género Homo, ayudaría a reducir la brecha evolutiva entre Australopithecus y Homo al proporcionar pistas acerca de los cambios que se produjeron en la mandíbula y los dientes sólo 200.000 años después de la última aparición conocida de Australopithecus afarensis en el cercano yacimiento etíope de Hadar. Sin embargo, debemos ser cautos ya que LD 350-1 no deja de ser una mandíbula que presenta rasgos primitivos y ha sido datada en un momento muy lejano del siguiente fósil claramente humano (AL 666-1). Podríamos estar frente a los restos de un australopitecino.

En definitiva, es fácil sostener que el paisaje de creciente aridez descrito en el estudio fue clave para que los australopitecos que vivían en los árboles cambiasen de ambiente y de dieta. Sus grandes dientes, útiles para masticar hojas y frutos, se habrían vuelto más pequeños —y por tanto, más parecidos a los humanos— y su cerebro habría aumentado de tamaño.

En cualquier caso, es preciso contar con un mayor número de fósiles de este periodo para determinar si estos cambios ambientales vinieron acompañados o no de una expansión neurocraneal, de la innovación tecnológica, o de cambios en otros sistemas anatómicos y conductuales, rasgos todos ellos definidores de la pauta adaptativa del género Homo.

Para terminar, les dejo con la noticia del hallazgo:

Referencias

Spoor F, Gunz P, Neubauer S, Stelzer S, Scott N, Kwekason A, & Dean MC (2015). Reconstructed Homo habilis type OH 7 suggests deep-rooted species diversity in early Homo. Nature, 519 (7541), 83-6 PMID: 25739632
Villmoare B, Kimbel WH, Seyoum C, Campisano CJ, DiMaggio E, Rowan J, Braun DR, Arrowsmith JR, & Reed KE (2015). Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science (New York, N.Y.) PMID: 25739410
DiMaggio EN, Campisano CJ, Rowan J, Dupont-Nivet G, Deino AL, Bibi F, Lewis ME, Souron A, Werdelin L, Reed KE, & Arrowsmith JR (2015). Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia. Science (New York, N.Y.) PMID: 25739409

Notas

  1. Spoor, F., et al. (2015), «Reconstructed Homo habilis type OH 7 suggests deep-rooted species diversity in early Homo». Nature, vol. 519, núm. 7541, p. 83-86.
  2. Villmoare, B., et al. (2015), «Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia». Science, en prensa (publicado en línea).
  3. DiMaggio, E. N., et al. (2015), «Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia». Science, en prensa (publicado en línea).
  4. Leakey, L. S. B. (1961), «The juvenile mandible from Olduvai». Nature, vol. 191, núm. 4786, p. 417-418.
  5. Leakey, L. S. B.; Tobias, P. V. y  Napier, J. R. (1964), «A new species of the genus Homo from Olduvai gorge». Nature, vol. 202, núm. 4927, p. 7-9.
  6. Villmoare, B., et al. (2015), «Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia». Science, en prensa (publicado en línea).
  7. DiMaggio, E. N., et al. (2015), «Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia». Science, en prensa (publicado en línea).
Publicado por José Luis Moreno en ANTROPOLOGÍA, 1 comentario
Siete días … 10 a 16 de marzo (Little foot)

Siete días … 10 a 16 de marzo (Little foot)

     Última actualizacón: 24 septiembre 2017 a las 12:59

BIOLOGÍA

Los elefantes del Parque Nacional Amboseli (Kenia, África) diferencian a sus enemigos por la voz. Estos animales reconocen a los varones de la tribu masái –su principal amenaza humana en esta región– y responden ante ellos con un comportamiento defensivo, incluso aunque se hagan pasar por mujeres.

“Reconocer a los depredadores y juzgar el nivel de amenaza que poseen es una habilidad crucial para muchos animales salvajes”, indica Karen McComb, líder del estudio.

Según los investigadores, la capacidad de discriminar la amenaza real de la aparente tiene un impacto importante ya que evita interrupciones repetidas de la alimentación y reduce el estrés fisiológico del animal.

En su trabajo de campo, los científicos grabaron una misma frase: “Mira, mira por allá, un grupo de elefantes se acerca”, en los idiomas maternos de dos tribus, la masái y la kamba. Registraron un total de 25 voces de hombres y mujeres de la tribu masái –tanto de adultos como de jóvenes–, y también registraron diez voces de adultos machos de la etnia kamba.

“Los masái pastan su rebaño por el Parque Amboseli y, por lo tanto, tienden a encontrarse más con elefantes que los miembros de la tribu kamba, cuya actividad principal se basa en la agricultura de parcelas afincadas lejos del parque”, declara Graeme Shannon, uno de los autores del estudio.

Los resultados del experimento mostraron que estos gigantescos mamíferos tenían un comportamiento más defensivo, como agruparse o husmear, ante las grabaciones de los hombres de la tribu masái, que cuando oyeron a mujeres y niños de esta etnia, o a hombres de la tribu kamba.

Trabajos previos estudiaron el comportamiento de estos paquidermos ante estímulos visuales y olfativos. Según los científicos,  los elefantes tenían también más miedo cuando se encontraban con ropa de color rojo y olor típico de la tribu de los masái, que con las prendas de los kamba.

Shannon concluye: “Con las señales acústicas, los elefantes reconocen la etnia, la edad y el género de un predador potencial. Esta es una ventaja a sistema de defensa y lo hace más efectivo. Muy útil cuando el depredador se encuentra fuera del campo de visión”.

• Noticia Agencia SINC

• Artículo: Elephants can determine ethnicity, gender, and age from acoustic cues in human voices.

EVOLUCIÓN HUMANA

‘Little Foot’ se convierte en el australopitecus completo más antiguo. Después de trece años de excavación meticulosa del esqueleto fósil casi completo de australopitecus llamado Little Foot (Pié Pequeño), científicos sudafricanos y franceses han demostrado de manera convincente que es probable que tenga alrededor de 3 millones de años.

En un artículo publicado recientemente, los últimos hallazgos del profesor Ron Clarke de la Universidad de Witwatersrand y sus colegas refutan afirmaciones anteriores de que estos restos corresponden a un espécimen más joven, como resultado de un estudio detallado de la estratigrafía, microestratigrafía, y geoquímica en todo el esqueleto.

En 1997, Ron Clarke, Stephen Motsumi y Nkwane Molefe de la Universidad de Witwatersrand, descubrieron un esqueleto casi completo de australopitecus con el cráneo incrustado en el sedimento calcificado en una cámara subterránea de las cuevas. Comenzaron a excavar cuidadosamente este esqueleto con el fin de entender los procesos que contribuyeron a su conservación.

Esta fue la primera vez que una excavación de un australopitecus ha tenido lugar en un antiguo depósito calcificado. Durante el transcurso de esta excavación, se hizo evidente que el esqueleto había sido sometido a una perturbación y al colapso parcial en una cavidad inferior y que un fluido calcáreo había llenado posteriormente los huecos formados alrededor de los huesos desplazados.

A pesar de este hecho, otros investigadores dataron las coladas y afirmaron que dichas fechas representan la edad del esqueleto. Esto ha creado la falsa impresión de que el esqueleto es mucho más joven de lo que realmente es.

Pero ahora, un equipo francés de especialistas en el estudio de cuevas de piedra caliza han demostrado que las coladas que llenaron los huecos se formaron por una antigua erosión y colapso, y que, por tanto, el esqueleto es más antiguo. Pie Pequeño tiene, probablemente, alrededor de 3 millones de años, y no los 2,2 millones de años que han sido injustamente reclamados por otros investigadores. El esqueleto ha sido totalmente excavado de la cueva y el cráneo, los brazos , las piernas, la pelvis y otros huesos se han limpiado en gran medida.

• Noticia Europa Press

• Artículo: Stratigraphic analysis of the Sterkfontein StW 573 Australopithecus skeleton and implications for its age.

NEUROCIENCIA

Investigadores españoles han observado un mecanismo desconocido hasta ahora por el que los axones, la parte de las neuronas especializada en conducir el impulso nervioso, son guiados a través del sistema nervioso en desarrollo hasta su destino. La molécula FLRT3 es clave para modular el comportamiento de estos axones en ese proceso.

El estudio desvela el mecanismo molecular que ocurre en el interior de los axones en crecimiento que permite respuestas rápidas a factores repulsivos y atractivos necesarios para alcanzar su destino.

El funcionamiento del sistema nervioso central se basa en el establecimiento de largos tractos axonales que crecen siguiendo complejas trayectorias. Estos tractos axonales están compuestos de haces de axones que permiten a las neuronas contactar con otras neuronas del sistema nervioso.

La proyección talamocortical constituye una de las conexiones más importantes del cerebro, ya que transmite la información de los órganos sensoriales hasta la corteza cerebral, donde la integración de esta información da lugar a la percepción y a la generación de respuestas adecuadas a los estímulos internos y externos.

El desarrollo aberrante de esta conexión podría estar implicado en algunas enfermedades neurológicas como el autismo o la epilepsia. Comprender el desarrollo temprano de la proyección talamocortical es un desafío fundamental para la neurociencia.

La investigadora Guillermina López Bendito explica en la nota de prensa del Instituto de Neurociencias que “los axones en crecimiento poseen una estructura muy dinámica en su extremo llamada cono de crecimiento que explora el entorno extracelular en busca de señales que indiquen al axón la dirección en la que debe crecer. Estas señales, llamadas moléculas de guía axonal, pueden estar fijas a un sustrato o ser difusibles, y pueden atraer o repeler a los axones. Los conos de crecimiento contienen receptores que reconocen estas moléculas de guía y traducen la información en una respuesta direccional”.

Mediante la combinación de estudios de bioquímica, biología molecular y genética, los investigadores han demostrado que la respuesta atractiva a la molécula de guía axonal Netrina1 está controlada por una proteína denominada FLRT3. Esta proteína regula la abundancia del receptor de Netrina1, denominado DCC, en la membrana celular. FLRT3 no se expresa en todos los axones en desarrollo sino en aquellos que requieren una regulación dinámica de la atracción por Netrina1.

La presencia o ausencia de FLRT3 es crucial para determinar la trayectoria de los distintos axones y las neuronas con las que conectan. De esta manera, conexiones axonales que se caracterizan por una organización espacial topográfica precisa, como la conexión talamocortical, se aseguran un desarrollo correcto durante la fase embrionaria.

Cada neurona del tálamo proyecta el axón hacia su respectiva área de la corteza cerebral y no a otras. “Demostramos que las proyecciones del tálamo que necesitan ser atraídas hacia zonas anteriores del cerebro expresan FLRT3, mientras que las que conectan con otras regiones no lo expresan”.

• Noticia Tendencias21

• Nota de prensa del Instituto de Neurociencias

• Artículo: FLRT3 is a Robo1-interacting protein that determines Netrin-1 attraction in developing axons

PALEONTOLOGÍA

Descubierto un tiranosaurio enano adaptado al frío del Ártico. El Tiranosaurio Rex tenía un primo enano adaptado a vivir en el Ártico. Su cráneo medía poco más de 60 centímetros de largo frente al metro y medio del carnívoro más famoso entre los dinosaurios y sería un animal adaptado a vivir en las condiciones difíciles del extremo Norte. A esta conclusión llegan los paleontólogos que han analizado unos fósiles del cráneo de un dinosaurio de hace 70 millones de años hallados en el Norte de Alaska y que, dadas sus características, incluyen en la familia de los tiranosaurios, aunque se trate, afirman, de una especie nueva que han bautizado Nanuqsaurus hoglundi.

“El tiranosaurio pigmeo por sí mismo es realmente genial porque nos dice algo acerca de cómo era el medio ambiente en el Ártico en el pasado remoto, pero lo que hace más interesante este descubrimiento es el hecho de que el Nanuqsaurus hoglundi también nos dice algo acerca de la riqueza biológica del antiguo mundo polar durante un tiempo en que la Tierra era muy templada en comparación con ahora.

Aunque el Ártico tuviera un clima más benigno que ahora hace 70 millones de años, la región estaba sometida a profundos cambios estacionales del régimen de luz, con inviernos oscuros y veranos de largos días. Muchos vertebrados se adaptan a vivir en regiones con fuerte variabilidad estacional que supone una época de disponibilidad de alimentos y otra de escasez o incluso ausencia; el truco está en almacenar reservas en la primera para sobrevivir en la segunda. Se sabe que los vertebrados modernos afrontan esas condiciones a través de cambios adaptativos fisiológicos o de comportamiento respecto a sus parientes de zonas menos extremas. Tal vez los dinosaurios funcionaran igual, señalan los investigadores de Texas, y el pequeño tamaño del N. hoglundi en comparación con sus gigantescos primos, la masa corporal reducida, sería una adaptaciones a la menor disponibilidad de alimentos y a las variaciones de temperatura.

Los fósiles del nuevo tiranosaurio fueron recogidos en el norte de Alaska en 2006 y estaban incrustados en bloques de roca; se llevaron al Museo de Dallas y donde los especialistas los sacaron y limpiaron. Actualmente se exponen en dicha institución. Son tres piezas de un cráneo incompleto: un fragmento del maxilar, otro de la parte superior del cráneo y el tercero de la cara.

• Noticia El País

• Artículo: A Diminutive New Tyrannosaur from the Top of the World (descarga directa en formato PDF)

FÍSICA

Científicos de la Universidad Nacional de Singapur han creado un dispositivo que convierte en térmicamente invisibles a personas u seres u objetos, es decir, que elimina o camufla el calor que emiten y que puede ser detectado por otros. Para ello utiliza materiales naturales, por lo que resulta rentable y fácilmente escalable.

El equipo ha investigado cuidadosamente su dispositivo en condiciones tanto dependientes del tiempo como de la temperatura y ha descubierto que posee un excelente rendimiento termodinámico.

Su investigación también ha introducido una nueva dimensión en el campo emergente de la «fonónica», que es el control y la manipulación del flujo de calor con los fonones (partículas que transmiten el calor dentro de los materiales sólidos).

Una aplicación derivada de la investigación, señala Qiu, sería la gestión del calor de circuitos electrónicos, interconectores y baterías muy compactados.

• Noticia Tendencias21

• Artículo: Experimental Demonstration of a Bilayer Thermal Cloak

• Artículo: Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials

CIENCIAS PLANETARIAS

Utilizando el telescopio ALMA (Atacama Large Millimeter/submillimeter Array) situado en el norte de Chile, un equipo de astrónomos ha anunciado hoy el descubrimiento de una inesperada aglomeración de monóxido de carbono en el polvoriento disco que rodea a la estrella Beta Pictoris. Esto supone una sorpresa, ya que se supone que este tipo de gas es rápidamente destruido por la luz de la estrella. Algo —probablemente numerosas colisiones entre pequeños objetos helados como cometas— puede estar haciendo que el gas siga reponiéndose continuamente.

Beta Pictoris, una estrella cercana fácilmente visible a ojo en el cielo austral, ya es aclamada como el arquetipo de sistema planetario joven. Se sabe que alberga un planeta que orbita a unos 1.200 millones de kilómetros de su estrella, y fue una de las primeras estrellas descubiertas rodeada por un gran disco de restos polvorientos.

Nuevas observaciones llevadas a cabo con ALMA muestran que el disco está impregnado de monóxido de carbono. Paradójicamente, la presencia de monóxido de carbono, tan nocivo para los seres humanos en la Tierra, podría indicar que el sistema planetario de Beta Pictoris podría convertirse en un buen hábitat para albergar vida. El bombardeo de cometas que están sufriendo sus planetas puede estar proporcionándoles agua, lo que podría permitir el desarrollo de vida.

Pero el monóxido de carbono se descompone rápidamente y con facilidad por la luz de las estrellas: solo puede durar unos 100 años en las zonas del disco de Beta Pictoris donde ha sido observado. Encontrarlo en el disco de Beta Pictoris, de 20 millones de años, es una sorpresa total. ¿De dónde proviene y por qué está aún ahí?

“A menos que estemos viendo a Beta Pictoris pasando por un momento muy inusual, el monóxido de carbono debe estar siendo repuesto de manera continua”, afirma Bill Dent, astrónomo de ESO en la Oficina Conjunta de ALMA (Joint ALMA Office, Santiago, Chile) y autor principal del artículo publicado hoy en la revista Science. “La fuente más abundante de monóxido de carbono en un sistema solas joven son las colisiones entre cuerpos helados, desde cometas hasta objetos mayores, de tamaño planetario”.

Se han planeado observaciones posteriores con ALMA, que aún no ha alcanzado el cien por cien de sus capacidades, aún en desarrollo, con el fin de arrojar más luz sobre este misterioso sistema planetario, ayudando así a comprender qué condiciones se dieron durante la formación de nuestro Sistema Solar.

• Noticia ESO (European Southern Observatory)

• Artículo: Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk

INGENIERÍA

Investigadores del CSIC y la Universidad Politénica de Valencia han creado una célula solar de silicio que transforma en electricidad la radiación infrarroja. Los resultados de la investigación podrían servir para crear células fotovoltaicas de alto rendimiento.

El Sol es una fuente inagotable de energía que de ser bien explotada podría solucionar muchos de los problemas energéticos actuales. El dispositivo capaz de realizar la conversión de luz solar en electricidad es la célula fotovoltaica, comúnmente conocida como célula solar.

Pero existen diversos obstáculos que impiden una mayor generalización de su uso, entre ellos un coste relativamente alto (del orden de 20 céntimos de euro por vatio producido) y una eficiencia baja, por debajo del 17 por ciento. Esto quiere decir que de cada vatio que recibimos del Sol, sólo a aprovechamos una pequeña parte, los 0,17 vatios que corresponden al espectro visible.

El motivo de la baja eficiencia de las células fotovoltaicas convencionales reside en que los materiales básicos para su fabricación, como el silicio, son baratos de producir, pero sólo pueden absorber y aprovechar una pequeña parte del espectro solar. El resto de la radiación solar, que corresponde a la zona infrarroja, no es aprovechada y se pierde.

El nuevo trabajo, en el que también han participado otros grupos del CSIC, la UPV, la UPC y la Universidad Rovira i Virgili de Tarragona, supone un nuevo enfoque científico para poder desarrollar en el futuro células fotovoltaicas de alto rendimiento.

• Noticia Agencia SINC

• Artículo: All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region (descarga directa en formato PDF)

HISTORIA

El láser y el radar desvelan los secretos de los puentes romanos. Descubrir arcos ocultos, visualizar el perfil alomado de la época medieval, localizar un grabado renacentista sobre un arco romano o detectar restauraciones. Estos son algunos de los resultados obtenidos por investigadores de la Universidad de Vigo tras analizar más de 80 puentes romanos y medievales con la ayuda de un georradar, un escáner láser y modelos matemáticos, una tecnología que ayuda a su conservación.

En los últimos años la UNESCO y otras organizaciones preocupadas por la conservación del patrimonio histórico y cultural han destacado la importancia de utilizar métodos no destructivos para documentar las características de los monumentos y evaluar su estado de conservación. En esta línea, investigadores del grupo de Geotecnologías Aplicadas de la Universidad de Vigo han utilizado láser y radar para, mediante rayos de luz y ondas, estudiar cerca de 85 puentes antiguos en el noroeste de España. El último, el de Monforte de Lemos, en Lugo.

El georradar o radar de subsuelo (GPR, por sus siglas en inglés) está constituido por una antena –que emite y recibe pulsos de corta duración–, una unidad de control y un ordenador. El conjunto se puede montar en una especie de carrito, donde va instalado el sistema, o en un vehículo móvil de inspección para ir tomando los datos sobre la calzada del puente.

“La información de este sistema se complementa con la que ofrece el LiDAR o láser escáner terrestre, cuyo haz barre todo el puente para tomar en unos minutos las coordenadas X, Y, Z de millones de puntos del monumento”, señala Solla. El resultado es una nube de puntos, a partir de la que se pueden obtener planos detallados y modelos en 3D del puente.

De esta forma se han detectado detalles estructurales y geométricos desconocidos, incluso grietas, en muchas de las construcciones. En algunos casos, como en el del puente romano de Segura, entre los municipios de Piedras Albas (Cáceres) y Segura (Portugal), esta tecnología también ha servido para detectar los restos de un grabado renacentista en uno de los arcos.

Según Solla, “toda esta información tiene un interés histórico, pero también es útil para que los ingenieros civiles planifiquen las medidas de conservación, mejora y restauración en este tipo de infraestructuras”.

• Noticia Agencia SINC

• Artículo: Ancient Stone Bridge Surveying by Ground-Penetrating Radar and Numerical Modeling Methods

ARQUEOLOGÍA

La localidad 1 de Zhoukoudian, en el norte de China, ha sido ampliamente conocida desde 1920, por el descubrimiento del ancestro humano del Pleistoceno Medio, Homo erectus pekinensis (conocido como el Hombre de Pekín). Desde 1931, la consideración de que los homínidos de Zhoukoudian podían usar y controlar el fuego había llegado a ser ampliamente aceptada. Sin embargo, algunos análisis habían puesto en duda esta afirmación, pues el agregado silíceo (una fase insoluble de la ceniza quemada) no estaba presente en los restos de cenizas recuperados en el yacimiento.

Ahora, nuevos análisis sobre cuatro muestras de cenizas recuperadas en diferentes ubicaciones de la localidad 1 de Zhoukoudian, durante las excavaciones llevadas a cabo en 2009, presentan evidencias del uso controlado del fuego por parte del Hombre de Pekín

Con el fin de examinar si el agregado silíceo y el potasio estaban presentes en la fase insoluble de la ceniza, Gao Xing y su equipo recogieron cuatro muestras en diferentes ubicaciones del yacimiento: una muestra del nivel estratigráfico 6 (ZKD4) y tres del nivel 4 (ZKD1, ZKD2, y ZKD3). Una vez que la presencia de agregados silíceos y de potasio son identificados en los depósitos de ceniza, la utilización, in situ, del fuego se puede extrapolar.

Los análisis detectaron un gran número de aglomerados sinterizados en las fases insolubles residuales de las muestras. Además, indicaban que los elementos asociados a los agregados silíceos (Al, Si, K y Fe) estaban presentes en las cuatro muestras. El análisis de la composición del material mostró que las sustancias de las fases insolubles de la ceniza eran principalmente SiO2, C elemental y silicatos. El carbono elemental estaba presente en la ceniza, y las fases insolubles contenían de un 1,21% a 2,94% de peso de K elemental. Por lo tanto, los resultados de las pruebas indican claramente la presencia de C elemental, de K elemental y de áridos silíceos en las fases insolubles de la ceniza de la localidad 1 de Zhoukoudian, proporcionando una fuerte evidencia de la utilización, in situ, del fuego por parte del Homo erectus pekinensis.

• Noticia Phys.org (en inglés)

• Artículo: On the possible use of fire by Homo erectus at Zhoukoudian, China

Publicado por José Luis Moreno en SIETE DÍAS, 1 comentario