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Despite the vast diversity of sizes and shapes of living organisms,
life’s organization across scales exhibits remarkable commonali-
ties, most notably through the approximate validity of Kleiber’s
law, the power law scaling of metabolic rates with the mass of an
organism. Here, we present a derivation of Kleiber’s law that is
independent of the specificity of the myriads of organism species.
Specifically, we account for the distinct geometries of trees and
mammals as well as deviations from the pure power law behavior
of Kleiber’s law, and predict the possibility of life forms with ge-
ometries intermediate between trees and mammals. We also make
several predictions in excellent accord with empirical data. Our
theory relates the separate evolutionary histories of plants and
animals through the fundamental physics underlying their distinct
overall forms and physiologies.
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Understanding the origin and evolution of the geometries of
living forms is a formidable challenge (1, 2). The geometry

of an object can be characterized by its surface−volume re-
lationship—the surface area S of an object of volume V can scale at
most as S∼V and at least as S∼V 2=3 (3). These geometries have
been used by nature in space-filling trees and animals, respectively.
Here, our principal goal is to explore how it is that both geometries
of life coexist on Earth, whether intermediate geometries are
possible, and what all this implies for evolution of life on Earth.
Living organisms span an impressive range of body mass,

shapes, and scales. They are inherently complex, they have been
shaped by history through evolution and natural section, and
they continually extract, transform, and use energy from their
environment. The most prevalent large multicellular organisms
on Earth, namely plants and animals, exhibit distinct shapes, as
determined by the distribution of mass over the volume. Animals
are able to move and are approximately homogeneous in their
mass distribution—yet they have beautiful fractal transportation
networks. Plants are rooted organisms with a heterogeneous self-
similar (fractal) geometry—the mass of the tree is more con-
centrated in the stem and branches than in the leaves.
The approximate power law dependence of the metabolic rate,

the rate at which an organism burns energy, on organism mass
has been carefully studied for nearly two centuries and is known
as allometric scaling (4–32). From the power law behavior, with
an exponent around 3/4, one can deduce the scaling of charac-
teristic quantities with mass and, through dimensional analysis,
obtain wide-ranging predictions often in accord with empirical
data. However, what underlies this ubiquitous quarter-power
scaling, and with a dominant exponent of 3/4?
In an influential series of papers, West and coworkers (11, 12,

14–16) suggested that fractality was at the heart of allometric
scaling. Inspired by these papers, a contrasting view was pre-
sented (13), which argued that, although fractal circulatory net-
works may have advantages, quarter-power scaling came built in
with the directed transport of nutrients. However, this latter
paper was necessarily incomplete because it did not address the
distinct geometries of animals and trees. More recently, mem-
bers of both groups joined together to construct explicit models
for animals, which showed (24) that “quarter-power scaling can

arise even when there is no underlying fractality.” Here, we
take a fresh look at the problem and derive quarter-power
scaling quite generally for all living organisms. We then turn
to a consideration of the sharp differences in the geometries
of animals and trees and argue that the evolution of organ-
ismal forms follows from a rich interplay of geometry, evolu-
tionary history, developmental symmetry, and efficient nutrient
acquisition.
Despite their independent evolution and different metabo-

lisms, vascular plants and bilaterian animals share major design
features, namely, an internal mass comprising organized cells
capable of metabolic and bioenergetic activities, a transport
mechanism for distributing molecules and energy within itself,
and a surface capable of exchanging matter and energy with the
environment. Regardless of the shape differences observed be-
tween these two groups, the physics associated with the trans-
formation, transport, and exchange of matter and energy must
unavoidably impose physical constraints on their designs. An
organism is akin to an engine—part of the energy obtained
from nourishment is used for organism function, growth, re-
production, while the rest is dissipated through its surface. We
consider the hypothesis of the survival of the fittest in terms of
energy metabolism and postulate that an organism with a higher
energy intake would have a competitive advantage over another
organism of similar mass performing energetically suboptimally,
and explore its consequences.
Consider an isotropic 3D organism of spatial extent h whose

volume V scales as V ∝ h3. Generalization to organisms with
distinct scaling along the three different directions is straight-
forward. We make the simplifying assumption that the con-
sumption and metabolic activity is distributed uniformly in space
and in time or suitable averaging is used. We denote the basal
metabolic rate of the organism by B and its mass by M. B is
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a measure of the energy being delivered to the organism per unit
time and ought to be proportional to the energy dissipated
through its surface. There is no evidence of size selection in
empirical data, and this lends support to the assumption that the
efficiency of the engine is independent of the organism’s size. We
will derive Kleiber’s law based on energy intake considerations
and study the role of geometry, as captured in the surface−
volume relationship, on considering the expelled energy.
Our goal is to understand the ideal dependence of B on M in

the scaling regime. The characteristic time scale associated with
the organism is known to scale as M=B—it is a measure of how
long it would take for energy proportional to M to be dissipated
at a rate of B. Henceforth, proportionality constants, which serve
to fix the correct units of various quantities related through
scaling relations, will be omitted for the sake of simplicity.
The number of metabolites, N, consumed in the organism per

unit time is proportional to B. Let us define N =L3, so that a
single metabolite is consumed per unit time in the local region
surrounding each site of an L×L×L grid. Each of these sites
can be thought of as being within a service volume, in which one
metabolite is consumed per unit time, of linear spatial extent
h=L∼ ðV=BÞ1=3. At the local level, the metabolites need to be
transported this distance over unit time, and one immediately
finds (24) that the transport velocity v∼ h=L∼ ðV=BÞ1=3. Another
measure of the transport velocity is obtained by noting that it is
a characteristic length scale of the organism divided by the cor-
responding characteristic time scale and therefore scales as
h=ðM=BÞ. Setting the two measures to be proportional to each
other, one obtains Kleiber’s law B∼M3=4.
An alternative way of deriving the same result in a more rig-

orous manner is through the consideration of the properties of
efficient transportation networks. The goal is to determine the
minimum number of metabolites in transit, a measure of the
organism mass, to ensure that L3 metabolites are delivered in
unit time within the organism volume. One can prove that the
mass scales at least as L4 with the optimality arising for efficient
directed networks with no large-scale backtracking (13). This
again leads to Kleiber’s law.
Remarkably, the idealized metabolic rate−mass relationship

is predicted to be algebraic with a 3=4 exponent independent
of the geometry of the organism. Such competitive equivalence
explains the coexistence of animals with a homogeneous tissue
density and fractal plants on Earth. The mass-specific metabolic
rate, B=M, scales as M−1=4, whereas the transit time scales as

∼M1=4. Indeed, characteristic biological rates (such as the heart
beat and mutation rates) and characteristic biological times
(such as circulation times or lifetimes) scale as M−1=4 and M1=4,
respectively (6, 7, 9–12, 14–16).

Results and Discussion
We now turn our attention to geometry and the constraints it
imposes on the physiology of an organism. The link arises from
the well-known observation that the metabolic rate is pro-
portional to the surface area. The crucial point, which seems to
have been overlooked in the literature, is that the proportionality
constant includes the velocity of nutrient delivery and/or energy
transport at the surface. Thus, the two quantities that determine
the metabolic rate, B, are the surface area, S, and the velocity of
transport at the surface, v: B∼ Sv. A pure power law in the B –M
relationship would be expected only when the product of the
surface area and the transport velocity at the surface scales
precisely as a power law of the organism mass. One would expect
that the transportation ability at the surface could vary from
species to species depending on the conditions of the surface as
well as on ambient conditions. Thus, pure power law behavior
would only hold in an idealized situation.
The surface area of the organism, S, is given by B=v, and

therefore S∼L3=ðh=LÞ∼L4=h. The surface area of an object of
volume V can scale at most as S∼V or at least as S∼V 2=3. More
generally, S∼Vx ∼ h3x with 2=3< x< 1, and thus L4 ∼ h3x+1.
Noting that v∼ h=ðM=BÞ, one finds that M ∼ hB=v∼V ð1+3xÞ=3,
v∼ h=L∼V ð1−xÞ=4, and B∼V ð1+3xÞ=4. The V −B relationship is
different for different geometries, leading to profound con-
sequences for life (Table 1). The two limiting cases of geometry
have been exploited by nature: x= 1 in trees, and x= 2=3 in animals.
For a tree, the volume is all surface ðS∼V Þ with the leaves

acting as terminal units from which water transported from
the ground evaporates. The transport velocity is independent of
the organism mass. This is convenient because water has to
be transported upwards against gravity. The organism mass
M ∼ h4 ∼V 4=3 and implies a density which increases with organ-
ism mass (see Methods). This geometry is tantamount to an or-
ganism in three dimensions having an effective dimensionality (12)
of 4. Interestingly, a value lower than 3=4 of the metabolic rate−
mass exponent is predicted if the tree is not isotropic, i.e., its
crown diameter scales sublinearly with tree height (22). The mass
of the tree is not uniformly distributed but rather is concentrated
in the trunk and the branches in a self-similar manner (19, 20).

Table 1. Summary of predictions of the theoretical analysis

Tree, x = 1 Animal, x = 2=3 Intermediate geometry

Metabolic rate 3=4 3=4 3=4
Characteristic length 1=4 1=3 1=ð3x + 1Þ
Characteristic time 1=4 1=4 1=4
Characteristic rate −1=4 −1=4 −1=4
Organism volume 3=4 1 3=ð3x + 1Þ
Transport velocity 0 1=12 3ð1− xÞ=½4ð3x + 1Þ�
Need for pump No Yes Yes
Density 1=4 0 ð3x −2Þ=ð3x +1Þ
Surface area 3=4 2=3 3x=ð3x +1Þ
Recirculation network No Yes Yes
Fractality of organism Yes No Yes
Service volume density 0 −1=4 9ðx −1Þ=½4ð3x + 1Þ�
Trunk radius 3=8 1=3 3x=½2ð3x +1Þ�

The geometry of the organism enters through the scaling of its surface area S with volume V, S∼Vx . The
exponents characterize the scaling of the quantity in the first column with organism mass M. The idealized
scaling of the basal metabolic rate, the characteristic time (as reflected in circulation times and life times), and
the characteristic rate (such as mutation rates or pump rates) do not depend on the geometry and are universal.
Many of the predictions for trees and animals have been observed empirically (10–12, 14–16, 19, 20). The results
for organisms with intermediate geometry interpolate between the results for animals and trees.
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In contrast, an animal has a uniform density—mass and vol-
ume are proportional. The positive scaling (24) of the blood
velocity with animal mass as M1=12 requires the presence of
a pump, the heart (33, 34). A fractal tree is a rooted organism
because of its branching, whereas the nonfractal animal has the
advantage of being able to move. The density of service volumes
is independent of tree volume, whereas it decreases with increase
in animal size, as does the mitochondrial density.
An organism with an intermediate geometry, although matching

a tree and a mammal in metabolic efficiency, would require
a complex circulation network because not all volume ele-
ments lie at the surface. Such organisms would not be as easily
mobile because of their fractal geometry, and require a pump
because the transport velocity increases with organism mass as
v∼Mð3−3xÞ=ð12x+4Þ. Table 1 shows the key predictions of our anal-
ysis and highlights the commonalities and differences between
the geometries and physical attributes of plants and animals.
Given the richness of nature’s adaptive strategies and differ-

ences in life history, climate, metabolic strategies, and habitat of
multicellular organisms, a remarkable result is that, despite devi-
ations and variations, robust trends are observed in the relation-
ship between metabolic rates and body mass. Fig. 1 shows
interspecies log-log plots of the metabolic rate−mass relationships
for trees [data from Mori et al. (21)] and mammals [from McNab
(18) and presented in ref. 23]. Even though the curvatures of the
two plots are distinct, in the large mass limit, both trees and
mammals approximately follow Kleiber’s law B∼M3=4, where B is
the basal metabolic rate of an organism of mass M. The obser-
vations of such scaling behavior have been accompanied by vig-
orous debate on the specific form of the relationship as well as on
the reasons underlying such behavior. Much of the debate has
stemmed from the exponent value of 3=4. As noted above, the 3=4
exponent arises for a tree essentially from an effective di-
mensionality of the tree being 4 instead of 3. How can the effective
dimensionality of an object be greater than the dimensionality of
space it resides in? The constraint of packing a mass (scaling as the
tree volume to the 4=3 power) within the tree volume requires
a density that scales as M1=4. This is facilitated through a hetero-
geneous distribution of mass over a range of scales. The mass of
a tree is not uniformly distributed but is rather concentrated within
the trunk and the branches. Denoting the tree height and trunk
radius by h and rT , respectively, we obtain M ∼ h4 ∼ r2Th or r2T ∼ h3
and rT ∼M3=8. In order for this mass to be contained within
a volume of size h3, the mass M cannot be greater than ρh3, and
this can be satisfied only when h< hc, the upper cutoff scale for
tree size. Here ρ is an upper bound on the density of a tree
component and can be thought of as the mass density of the trunk.
By definition, M = ~naveh3 where ~nave is the average mass den-

sity (apart from a numerical factor that takes into account the
specific tree geometry—the numerical factor is π=6 for a sphere
of diameter h). Because M ∼ h4, ~nave ∼ h (apart from a constant
with units that fixes the correct dimensionality). From the obvi-
ous bound ~nave < ρ, the trunk density, we deduce that hc =Kρ,
where the constant K has units of length4/mass. One would ex-
pect that K would depend on details and not be universal.
The h3 ∼ r2T result is known to occur in two contexts: (i) It

describes the relationship between tree height and diameter (see
figure on p. 142 of ref. 6 for interspecies scaling, and figure on
p. 143 for intraspecies scaling); and (ii) because of the self-
similar nature of a tree, it also describes the tapering of a tree
trunk (22). Interestingly, the tapering has been derived pre-
viously (6) in a completely different manner using solid me-
chanics by asking how tall a column of a given diameter could
become before it buckles under its own weight.
During the seedling stage of tree growth, most of the mass is

composed of metabolically active tissues (17). When the mass of
the leaves (which is responsible for the metabolism) accounts for
a constant fraction of the total mass, M would be expected to be

proportional to B. The crossover between the two distinct
behaviors (M ∼B and Kleiber’sM ∼B4=3) can be simply captured
by the expression

M ∼ aB4=3
�
1+

b
B1=3

�
; [1]

where b3 sets the scale of B at which the crossover occurs cor-
responding to a crossover mass of ∼ ab4. The distinct linear

A

B

Fig. 1. Log-log plots of metabolic rate versus mass for trees and animals show
deviations from pure power law behavior. The plot suggests that the curvatures
(23) in the data sets are opposite to each other. Shigeta Mori (21) provided the
tree data (A), and the mammal data (B) are taken from ref. 18. The curvatures
are explained as arising from the crossover of exponent values. (A) The solid line
shows a fit toM= aB4=3ð1+b=B1=3Þ. The adjusted R2 value is 0.979, a= 2:10 with
SE 0.220 and P value of 10−19, and b= 0:315 with SE 0.0602 and P value of 10−6.
Interestingly, one obtains a leading exponent indistinguishable from 4=3 if one
chooses to make it an adjustable parameter. (B) Motivated by the lack of con-
sensus of the exponent associated with pure power law behavior of the meta-
bolic rate with mass, Kolokotrones et al. (23) carried out extensive analysis of
several data sets, principally one due to McNab (18), and showed that the data
exhibit curvature on a log-log plot. The analysis was carried out twice, excluding
and including the effects of body temperature on metabolic rate. In both cases,
the authors used an empirical quadratic fit in which the logarithm of the met-
abolic rate was expanded in terms of the logarithms of the bodymass, measured
in grams. The dashed line is a fit to B=bM2=3

Mammalmaxð1,ðMMammal=M1Þ1=12Þ.
The adjusted R2 value is 0.961 comparable to the quality of fit presented in
(23), b= 0:0241 with SE 4:410−4 and P value of 10−243, and log10M1 = 2:63
with SE 0.162 and P value of 10−50.
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scaling for juveniles was underscored by Reich et al. (17), and
a somewhat similar crossover relationship was presented by
Enquist et al. (29) and more recently by Mori et al. (21). Fig. 1A
shows a log-log plot of B versus M for trees (data from ref. 21)
along with a fit to Eq. 1.
We now consider the other limiting case of organism geometry

corresponding to a minimal surface area for a given volume: an
animal with x= 2=3, S∼V 2=3, and M ∼V ∼ h3. To match the
metabolic efficiency of animals with trees, one now requires
v∼M1=12. In the simple situation of a single velocity scale (i.e.,
the velocities in various parts of the mammal body all being
proportional to each other with a proportionality constant in-
dependent of organism mass), one would expect that the mean
blood velocity also scales asM1=12. This is supported by empirical
data (9)—a velocity increasing with organism mass necessitates
the use of a mechanical pump such as a heart. Unlike in trees,
the service volumes being nourished in an animal do not all

reside at its surface. Thus, one requires a more complex circu-
lation network because, nonetheless, dissipation occurs at the
surface. Unlike trees, which are fractal and rooted, compact
organisms have the distinct advantage of being able to move.
Again, assuming a single velocity scale, the aorta cross-sectional
area ought to scale as the ratio of B to the transport velocity
or as M2=3. One would expect then that the aorta radius scales
as M1=3, again in accord with empirical data (24, 35). When
Kleiber’s law holds, the mass-specific metabolic rate, B=M,
scales as M−1=4, whereas the transit time scales as h=v∼V 1=3=
ðV=BÞ1=3 ∼B1=3 ∼M1=4.
The linear size of the service volume and the transport velocity

at the surface become smaller in an animal as its mass decreases.
One would therefore expect that below a certain threshold
mass, M1, mechanisms such as diffusion, which are body mass
independent (recall that the velocity in trees is indeed in-
dependent of mass), become operative. Our approach allows

A

B

Fig. 2. Consensus phylogenetic trees for the evolution of the major lineages of modern plants (A) and animals (B) underscore the role of physics as a major
selective pressure for driving the evolution of the design of multicellular organisms. (Adapted from refs. 36, 39, and 40.) The origins of the major innovations
in organismal form are also plotted on these trees. The earliest diverging lineages of multicellular animals (e.g., sponges and cnidarians) and of multicellular
plants (e.g., bryophytes) lack complex transport tissues. The later-arising groups of vascular plants and bilateral animals evolved complex transport tissues,
namely, xylem and phloem, and circulatory systems, respectively. In terms of species numbers, vascular plants and bilateral animals dominate modern eco-
systems, but it is important to consider the simpler forms of the basal lineages to understand the selection pressures driving the evolution of complex or-
ganismal forms. Organism drawings are intended to associate the names of different groups with representative organisms. Due to their size range of 7
orders of magnitude, they are not presented in proper scale. seg, segmentation. (Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ.)
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one to incorporate velocity variation with organism size in a
natural way leading to:

B∼ S  v∼M2=3
Mammalmax

�
1; ðMMammal=M1Þ

1
12

�
: [2]

Fig. 1B shows a log-log plot of mammal metabolism data [from
McNab (18) and presented in ref. 23] along with a fit to Eq. 2. In
this simple scenario, the opposite curvatures in a log-log plot of
B versusM arise because the exponent crosses over from 1 to 3=4
as tree size increases whereas the crossover occurs from 2=3 to
3=4 as mammal mass goes up.
We turn now to a discussion of the prevalence of separate

convergent forms in animals and plants, which is diagnostic of
physical and metabolic factors serving as selective pressures
affecting the overall evolution of form. Developmental per-
spectives (36–38) provide the fundamental insight that the pat-
terns of organismal symmetry are established during the earliest
developmental stages for most multicellular organisms, including
plants and animals. Subsequently, these organisms often grow
into complex forms through independently evolved mechanisms
including modularity, fractal structure, and segmentation. De-
spite the diversity of life forms, the approximate validity of
Kleiber’s law (4, 6, 7, 9–25) provides a remarkable unifying
feature. This allometric scaling pertains to biological structures
ranging from unicellular organisms to the tallest trees and has
direct implications for characteristic rates and time scales.
Animals and plants evolved from different ancestral unicel-

lular eukaryotes (37), and their characteristic developmental
symmetries, transport systems, and complex forms have evolved
independently from each other (Fig. 2). Interestingly, basal lineages
of either plants or animals do not exhibit the characteristics of
transport tissues and complex structures observed in later-evolved
species of both groups. This implies that various selection pressures,
including physical constraints, have been favoring the evolution
of overall forms and transport structures that are better adapted
to carry out particular energetic strategies.
Bilaterian animals with circulatory systems are characterized

by higher metabolic and transport rates than simpler basal ani-
mals, such as barrel sponges and large cnidarians, of the same
mass. In the fruit fly Drosophila, a gene called tinman functions
as the master control switch for initiating the development of the
simple insect heart. Despite the profound differences in the
circulatory systems and cardiac structures of insects vs. verte-
brates, the homologous gene designated as Nkx2− 5 plays the
same role in vertebrate heart development (33). The presence of
these homologous genes and associated regulatory networks in
the principal bilaterian lineages argues that the bilaterian com-
mon ancestor had evolved a major innovation in animal design,
namely a rudimentary circulatory system having a pump whose
development was regulated by the ancestral tinman=Nkx2− 5
gene (34).
The earliest plants evolved from simple algal relatives to be-

come the first successful multicellular invaders of terrestrial
environments. They—and their modern bryophyte descendants—
lack complex transport systems, i.e., water-conducting xylem and
sugar-conducting phloem. In a manner analogous to what hap-
pened in animal evolution, the evolution of these complex
transport systems in vascular plants accompanied a dramatic
change in organismal form (36, 38). Then several lineages of
early vascular plants independently evolved bilateral leaves
specialized for photosynthesis and evapotranspiration, as well

as cylindrical roots specialized for water and ion absorption (36,
38). The basic form of these ancient plants is replicated by the
fractal stem and root systems of modern plants. Interestingly,
this fractal form has permitted many vascular plant lineages to
achieve great heights, as evidenced by repeated evolution of tree-
like plants ranging from the arborescent lycopods and horsetails
in Carboniferous forests 360–300 million years ago to the co-
niferous and angiosperm trees of today (38). Furthermore, the
evolution of space-filling leaves has allowed vascular plant trees
to effectively improve their energetic efficiency.

Methods
We postulate that Kleiber’s law represents a central tendency capturing joint
fluctuations in the measurement protocol of metabolic rates (26) (field,
basal, maximum, etc.) and body sizes (27). To illustrate the key mathematical
idea, we present an analytic derivation of Kleiber’s law for the idealized
situation of a spherical organism of radius h and volume V = ð4=3Þπh3.
Consider an organism in steady state uniformly nourished from a single
source located at its center. Denoting the metabolic rate as B, the source
produces B metabolites per unit time. The amount of nutrients consumed
per unit volume in unit time is therefore given by B=V . Let ~nðrÞ and vðrÞ
denote the density of metabolites and their velocity at position r (measured
from the center) within the organism (metabolites are carried in a fluid). The
current of metabolites is then given by:

JðrÞ= ~nðrÞvðrÞ, [3]

with JðrÞ= 0 at the boundary, i.e., at jrj=h, because the nutrients are all used
within the organism. The uniform nourishment of the organism leads to the
conservation law:

divJðrÞ= −B=V : [4]

Note that the metabolically active sites (the leaves) are distributed uniformly
in a tree just as the metabolically active tissues are distributed uniformly in an
animal—it is the mass of the tree which is inhomogenously distributed,
unlike in an animal. As a byproduct of this nourishment, heat is generated
uniformly within the organism, which is then dissipated at its surface. This
heat is transported from within the organism by the fluid, and the nonzero
velocity at the surface plays a pivotal role. Solving Eq. 4with the condition of
no flow at the boundary, one obtains

jJðrÞj=B
h3 − r3

3Vr2
, [5]

where r = jrj. One can proceed to derive Kleiber’s law from the above
equation by recalling that the mean velocity scales as the service volume
length (24), ðV=BÞ1=3. The mean velocity can also be deduced using Eq. 3 and
the definition:

Æjvjæ=

Z
~nðrÞjvðrÞjd3rZ

~nðrÞd3r
~

Z
jJðrÞjd3r

M
: [6]

Equating the two measures of the mean velocity, one finds universally, for
animals and trees as well as intermediate life forms, Kleiber’s law. Of course,
deviations from the 3=4 exponent would arise when the two measures of
the velocity do not coincide. An exact result pertaining to the behavior of
optimal directed networks has been presented as supplementary material in
ref. 13.
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